Shortest Paths - Unit length edges
With a couple of lines of added code, BFS car compute the length of each vertex's path forms (∞ if not in same connected component)

$$
l(s)=0 ; \quad l(v)=+\infty \quad \forall v \neq s . \leftarrow \theta(n)
$$

and, when marking w as visited...

$$
\begin{equation*}
l(\omega)=l(v)+1 \tag{n}
\end{equation*}
$$

Question: what does this do to running time?
Question: What if the edges have distances...
i.e. not all edges have same value $e_{0}=$ INT_MAX

... we will figme out an algorithm for this later...

Running time of Augmented BFS

$$
\begin{aligned}
\theta\left(n^{\prime}+m^{\prime}+n\right) \quad n_{s}= & \text { number of vertices } \\
& \text { in connected component } \\
\theta\left(n+m^{\prime}\right) \quad & \text { of } s \\
m_{s}= & \text { number of edges in } \\
& \text { connected component of } S .
\end{aligned}
$$

Applications
Detecting Network failures
Data Visualization
clustering
How to compute number of connected components in a graph: \# components $=0$.

- While \exists an unmarked vertex or

- \#componats +t

$$
-\operatorname{BFS}(v)
$$

Depth-First Search (DFS)

Recall: Stack

Iterative version:

DFS
Input: $G=(V, E)$ in adj-list representation; ventex $s \in V$ Post cond: V is reachable form s iff marked $[v]=$ true.
$\forall v \in V \quad \operatorname{marked}[v]=$ false
Soinit () $S . \operatorname{insert}(S) \quad / I S$ is a stack.
while! S.empty ()
$v=S \cdot$ fiont (); S.pop();
if ! manked $[v]$
\forall edge (v, w)
S. push (ω)

Recursive version
Input: graph $G=(V, E)$ in adj list representation SEV; "set up" call is Pre_DFS (G)
Postcondition: $\forall v \in V, v$ is reachable from S ff $\operatorname{marked}[v]==$ true.

$$
\operatorname{maked}[s]=\text { true }
$$

$\forall \operatorname{adge}(s, v)$
if ! marked $[v]$

$$
\operatorname{DFS}(G, v)
$$

Oct 5

Note: "marked" is global to all reansive calls. other wise it wont work (or will need to be passed as a parameter).

Correctness of DFS:

- it halts, because DFS will only be called sconce on each vertex
- it is correct, as it is a version of generic Search. (a proof by induction, on distance (in \# of edges) will work ever better for recursive DFS)

Applications for DFS
Topological Sort

$$
\begin{array}{llllllll}
1 & 2 & 4 & 3 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 5 & 6 & 8 & 1 & 4 & 7
\end{array}
$$

Can't find a topological sort \Longleftrightarrow d directed cycle.

Directed Acyclic graph (DAG)

- not necessarily a tree (differs, from undirected case)
$\forall D A G$ has a topological sort
$\forall D A G$ has $\geqslant 1$ "Source" (no in-edges)
- Keep going backwards along edges - will either

Setup - DFS Top (G)
$\forall v \in V$ marked $[v]=$ false
cur Label $=|V|$
$\forall v \in V$ do
if Imanked $[v]$
DFS Topo (G, v)
$\operatorname{DFSTopo}(G, v)$
input: $G=(V, E)$ in adj-list form; $v \in V$
postcond: $f[1] f[2] \cdots f[|v|]$ is a topo-sort

$$
\begin{gathered}
\operatorname{marked}[v]=\text { true } \\
\forall \text { edge }(v, \omega) \\
\text { if ! } \operatorname{marked}[\omega] \\
\quad \operatorname{DFS} \text { Topo }(G, \omega) \\
f[v]=\text { cur Label -- }
\end{gathered}
$$

