Dictionary ADT, continued.

- Dictionary ("get elements by orderable Key" container) may also require: Successor Predecessor Minimum Maximum and ability to process Keys in order. Also called Dynamic Set

Binary Search Trees

- rooted trees, each node having
- a left child, which may be Nun
- a right child, which may be NulL
- a parent, which is NuLL if the node is the root.
- elements (or pointers to them) are stored at the nodes; elements have Keys
- The nodes are in BST-order:
- for any node $v$

Keys in subtree $v \rightarrow$ left are $\leqslant v \rightarrow$ Key
Keys in subtree $v \rightarrow$ right are $\geqslant v \rightarrow$ Key


Fill it with values 1.. 15

if $r \neq$ NULL
In Order Traversal $(r \rightarrow k f)$
print $r \rightarrow$ Key In Order Traversal ( $r \rightarrow$ right)
What would we get if called on $T_{1}$ ? on $T_{2}$ ?

BST_Search ( $r, K$ ) * returns a node with Key $K$ (x) if exists, NULL 0.w. *)
 if ( $r==$ NULL or $K==r \rightarrow$ Kay) return $r$

$$
K<r \rightarrow \text { Key }
$$

return BST_Search $(r \rightarrow$ left, $K)$
else return BST_Search $(r \rightarrow$ right, $K$ )
BST. Search has running-time $\theta(h)$, where $h$ is the height of the tree.
node* BST_Minimum (r)
/* return poor to node with smallest key in tree*/ if $(r==$ NULL or $r \rightarrow$ left $==$ NuLL $)$ return $r$ else return BST_Minimum ( $r \rightarrow$ left)


BST_Maximum ( $r$ )
It return pointer to node with largest key in tree */
Exercise for student


BST_Successor $(x)$
/* return pointer to node with smallest key $>k * /$

$$
\text { if }(x \rightarrow \text { right }!=\text { NuLL })
$$

return BST_Minimum $(x \rightarrow$ right $)$

$$
y=x \rightarrow \text { parent }
$$

while $(y!=$ NuLL and $x=y \rightarrow$ right $)$

$$
\begin{aligned}
& x=y \\
& y=y \rightarrow \text { parent }
\end{aligned}
$$

return $y$



Theorem: The Dictionary operations
Search, Minimum, Maximum, Successor, Predecessor can be implemented in $\theta(h)$ time using a BST of height $h$.
void $B S T$ _ Insert (br, e, k)
/* Insert element $e$ with key $k$ into
1* subtree rooted at $r$ *1
if $(r==$ NULL $)$
$r=$ new tree rode $(e, k)$
else if $(r \rightarrow$ key $<k)$
BST-Insert ( $r \rightarrow r i g h t, e, k$ )
else BSI. Insert ( $r \rightarrow$ left, $e, k$ ).


BST_Delete $(8 r, Z) \begin{aligned} & z \text { is a pointer to a } \\ & \text { node in the tree rooted } \\ & \text { at } r \text {. }\end{aligned}$ at $r$.
if $(z \rightarrow$ left $=$ NuLL or $z \rightarrow$ right $==$ NuLL $)$

$$
y=z
$$

else $y=B S T$. Successor $(z)$

/* $y$ is missing at least one child */ if $\quad y \rightarrow$ left ! = NuLl

$$
x=y \rightarrow \text { left }
$$

else $x=y \rightarrow$ right

if $x!=$ Null

$$
x \rightarrow \text { parent }=y \rightarrow \text { parent }
$$

if $\quad y \rightarrow$ parent $==$ NuLL

$$
r=x
$$

else if $y=y \rightarrow$ parent $\rightarrow$ left

$$
y \rightarrow \text { parent } \rightarrow \text { left }=x
$$

else $y \rightarrow$ parent $\rightarrow$ right $=x$.
if $y!=z$

$$
\begin{aligned}
& z \rightarrow \text { elemert }=y \rightarrow \text { elemert } \\
& z \rightarrow \text { key }=y \rightarrow \mathrm{key} .
\end{aligned}
$$

return $y$.


Theorem: BST-Insert and BST-Delete can be implemented to run in $\Theta(h)$ time, where $h$ is height of tree.

Theorem: Expected height of a BST built on a keyset, insertions are uniform random distribution, is $\theta(\log n)$

Theorem: Worst-case BST is height $\theta(n)$.

