Dictionary ADT, continued. - Dictionary ("get elements by orderable Key" container) may also require : Successor Predecessor Minimum Maximum and ability to process Keys in order. Also called Dynamic Set

BST.Search (r, k) /* returns a node with key k
(* if exists, NULL O.W. */
if (r== NULL or K==r > Key)
return r
if K < r > Key
return BST_Search (r > heft, K)
else return BST_Search (r > right, K)
BST_Search has running-time
$$\Theta(h)$$
,
Where h is the height of the tree.

BST_Maximum (r) /* return pointer to node with largest key in tree */ Exercise for student BST_Successor(x) /* return pointer to node with smallest key > K */ if (x->right != NULL) return BST_Minimum (>right) $y = x \rightarrow parent$ while (y!=NULL and x=y->right x = y $y = y \Rightarrow parent$ return y

Theorem: The Dictionary operations Search, Minimum, Maximum, Successor, Predecessor can be implemented in $\Theta(h)$ time using a BST of height h.

void BST_Insert (&r, e, k) /* Insert element e with key k into /* subtree rooted at r */ if (r==NULL) r=new treenade (e, k) else if (r>key < k) BST_Insert (r>right, e, k) else BST_Insert (r> left, e, k).

BST_Delete (
$$\[mathbf{S}\] r, Z$$
) z is a pointer to a
node in the tree rooted
if ($z \rightarrow left == Null or z \rightarrow right == Null$)
 $y = Z$.
else $y = BST_Successor(z)$
 $/* y is missing at least one child */if $y \rightarrow left != Null$
 $x = y \rightarrow left$
else $x = y \rightarrow right$
if $x \Rightarrow parent = y \Rightarrow parent$
if $y \Rightarrow parent == Null$
 $x = x$
else if $y = y \Rightarrow parent \rightarrow left$
 $y \Rightarrow parent \Rightarrow left = x$
else $y \Rightarrow parent \rightarrow right = x$.
if $y != z$$

 $Z \rightarrow element = y \rightarrow element$ $Z \rightarrow Key = y \rightarrow Key.$

return y.

Theorem: BST_Insert and BST_Delete Can be implemented to run in $\Theta(h)$ time, Where h is height of tree.

Theorem: Expected height of a BST built on a keyset, insertions are uniform random distribution, is $\Theta(\log n)$

Theorem: Worst-case BST is height $\Theta(n)$.