
 

ADT Dictionary
A Dictionary ADT is one that supports

the following operations

Init Is Empty

Insert x K
x is element with key
K

Search K returns the element

with key
K

perhaps if missing
returns closest

element with key
L K

Delete K
I key from a totallyordered set

Differs from a PQ wherein we

always
want to only extract the min



Insert Search Delete Init Space

unsorted on an on 011 Oln
list

sorted n D n n OCD O n

list

Array
packed

On Agn Ocn Od n

Array a OCD OCD n 0 101
Loose

Binary
search Oln n OG 011 Oln

Trees

y 9

Packed Array

ftp
zon 14gss13oo4i

record



Loose Array Direct Address Table

It FL

The Loose Array or simply Array
indexed by the keys is a fantastic

solution twhentikeytin use is

expected to be 8 I
T t universe of keyvalues

eg 8 0.1 or

10 of the array
8 FK

will be in use
washy YOB



Direct Address implementation

Direct Address Search K

return TEK

Direct Address Insert II
TEK

a pointer to x

Direct Address Delete K

TEK NULL

The main problem with Direct Address is

that many applications do Not have

high 8 high key density

Can we achieve Direct Address like



behaviour when J is tow

Hash Tables

Suppose you have a function h

h F O m 1

ie F maps the universe of keys to

a much smaller set of values

ideally values that index into an

appropriately sized array

8 001

Oi

i



iii

It

Kz

3

hCK

ii
i

BI
can we find a function h

that maps

exactly to o m i with M l l

don't need this

so as to have ne two distinct keys

used K and K2 where



h ki h Ka

t this is called a collision

Generally we cannot avoid collisions

because we don't always know in advance

what subset of U will be in use

Two strategies for dealing with collisions

I Chaining
h

TIME

In
TITIAN



Analysis of hashing with chaining

In this context we are actually interested

in expected behaviour more than worst case

behaviour

Why

worst case behaviour is pretty bad
acts just like unsorted linked list

The behaviour is not just a function
of the inputs but also of the

hash function we chose

worst case is decoupled from dependence

on inputs alone

There will always be a hash function

that has good worst case behaviour

on the same inputs



Given hash table T with m slots

and n elements

I is called the load factor

average
number of elements stored

per chain

Suppose we pick a hash function so

that a
randomly selected element of U

is equally likely to hash to each

of the m slots uniform distribution

and this assumption is simple uniform hashing

Also assume computing hick is EO i



Theorem 12.1 CRS

In a hash table with chaining
under simple uniform hashing

an unsuccessful search takes time

Ita on average
I for hashing the key

L elements on average
Proof

HIIIII at

FITT
I Dl



Theorem 12.2 E LRS

In a hash table with chaining
under assumption of simple uniform hashing

a successful search takes time

E OCH x

Proof
Suppose we change Insert so that it

traverses the list to the end and places

the new item there

This Insert has same running
time as

successful search

Consider all the inserts and all the element

comparisons done during these inefficient inserts

E It E n tee n
E C

elements in table



When i was

inserted

Divide by n to get average per insertion

Itn'm ÉÉi It EI
I Kim

I X Im

Numberof comparisons in successful search It 4 11
so is 0 2 2 Im Hx By

f all
hash to 5

ins 4 ins 3 ins 7 ins 8

good FIFTY
1 2 3 4



ins o ins I ins ins 4

s A Ft


