ADT Dictionary
A Dictionary ADT is one that supports the following operations:

Init (), Is Empty ()
Insert $(x, k)-x$ is element with key
Search (K) - returns the element with Ka K ,
perhaps if missing, returns closest element with key $<K$
Delete (K)
$\tau_{\text {key from a totally ordered set }}$

Differs from a $P Q$, where in we always want to only extract the min.

Insert Search Delete Init Space

Packed Array:

Loose Array ="Direct Address Table"

The Loose Array (or simply "Array", indexed by the Keys) is a fantastic solution then $\begin{gathered}\text { when "Keys in use" is }\end{gathered}$ expected to be $\gamma . U$
eg $\gamma=0.1$, or $\mathcal{T} \tau$ universe of Key values 10% of the array

$$
10 \mathrm{~KB}
$$ will be in use

$$
\gamma=\frac{|K|}{|\sigma|}
$$

Direct-Address implementation
DirectAddress Search (K) return $T[k]$

DirectAddress Insert (x, k)

$$
T[k]=a \text { pointer to } x
$$

Direct Address Delete (K)

$$
T[k]=\operatorname{Nuk}
$$

The main problem with Direct Address is that many applications do NOT have high γ (high Key density) Can we achieve DirectAddress - like
behaviour when X is low?

Hash Tables
Suppose you have a function h

$$
h: U \rightarrow\{0, \ldots, m-1\}
$$

ie. f maps the universe of keys to a much smaller set of values... ideally, values that index into an appropriately-sized array

$$
\gamma=, 001
$$

can we find a function h that maps:

- exactly to $\{0, \ldots, m-1\}$ with $m=|K|$?
- don't need this
- So as to have no two distinct keys used, K_{1} and K_{2}, where

$$
h\left(K_{1}\right)=h\left(K_{2}\right) ?
$$

$\tau_{\text {this is called a collision }}$
Generally, we cannot avoid collisions, because we don't always know in advance what subset of U will be in use.

Two Strategies for dealing with collisions.
I. Chaining

Analysis of hashing with chaining
In this context, we are actually interested in expected behaviour more than worst-case behaviour.

Why?

- worst case behaviour is pretty bad - acts just like unsorted linked list
- The behaviour is not just a function of the inputs, but also of the hash function we chose.... worst case is decoupled from dependence on inputs alone.
There will always be a hash function that has good worst case behaviour on the same inputs.

Given hash table T with m slots and n elements
$\alpha=\frac{n}{m}$ is called the load factor
$=$ average number of elements stored per chain.

Suppose we pick a hash function so that a randomly selected element of U is equally likely to hash to each of the m slots = "uniform distribution" and this assumption is simple uniform hashing Also assume computing $h(K)$ is $\in O(1)$.

Theorem 12.1 (CLRS)
In a hash table with chaining, under simple uniform hashing, an unsuccessful search takes time $\theta(1+\alpha)$ on average.
+1 for hashing the Key.
Proof

Theorem 12.2 (CLRS)
In a hashtable with chaining, under assumption of simple uniform hashing, a successful search takes time $\in \theta(1+\alpha)$

Proof.
Suppose we change Insert so that it traverses the list to the end and places the new item there.
This Insert has same running time as successful search.
Consider all the inserts, and all the element comparisons done during These (inefficient) inserts:

$$
\sum_{i=1}^{n}\left(1+\frac{i-1}{m}\right)=n+\frac{1}{m} \sum_{i=1}^{n}(i-1)
$$

\#elements in table

When i was
inserted
Divide by n to get average per insertion:

$$
\begin{aligned}
1+\frac{1}{n m} \sum_{i=0}^{n-1} i & =1+\frac{1}{n m}\left(\frac{(n-1) n}{2}\right) \\
& =1+\frac{n^{2}-n}{2 n m} \\
& =1+\alpha-\frac{1}{2 m}
\end{aligned}
$$

Number of comparisons in successful search $=1+\begin{gathered}\text { comparisons } \\ \text { insert }\end{gathered}$ So is $\theta\left(2+\alpha-\frac{1}{2 m}\right)=\theta(1+\alpha)$
\angle all rash to 5 .

$$
\operatorname{ins}(4) \ldots \operatorname{ins}(3) \ldots \operatorname{ins}(7) \ldots \operatorname{ins}(8)
$$

good:

$$
\begin{aligned}
& \text { ins (8) } \ldots \operatorname{ins}(7) \text { ins(3) ins (4), } \\
& \qquad \frac{18}{1} \frac{3 \pi}{3} \frac{4 \pi}{4}
\end{aligned}
$$

