Single-Source Shortest Paths
Input: Graph $G=(V, E)$, weight function $\omega: E \rightarrow \mathbb{R}^{+}$, save S, Goal: determine $\forall v \in V$ the shortest $S-V$ path (ie path with min sum of edge $\begin{aligned} & \text { weights) }\end{aligned}$

$$
\operatorname{relax}(g, d, w)
$$

if $d[g]>d[d]+\omega(d, g)$

$$
\lambda d[g]=d[d]+w(d, g)
$$

For a path $\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$, the weight of the path is $\sum_{i=1}^{k-1} \omega\left(v_{i}, v_{i+1}\right)$

The shortest-path weight from u to v is denoted

A shortest $u-v$ path is a $u-v$ path that realizes the shortest-puth weight.

d s ab cd e e

$d_{k}[s, y]=\min$ weight of a $s-y-$ path that only visits, as intermediate vertices (vertices along the way) the k closest vertices to S.

Start by calculating $d_{0}[s, y] \forall y$.

$$
\begin{aligned}
& d_{1}[s, y]=\text { shortest s-y path using }\{s\} \\
& d_{2}[s, y]=\text { shortest s-y path using }\{s, a\} \\
& d_{3}[s, y]=\text { shortest s-y path using }\{s, a, b\} \\
& d_{4}[s, y]=\text { shortest } s-y \text { path using }\{s, a, b, e\}
\end{aligned}
$$

etc.

Dijkstra's Algorithm

- Solves single-source shortest paths on weighted, directed or undirected graphs when edge weights are non-negative.

Dijkstra (G, w, s)
Initialize single source
set $S=\varnothing$
put each $v \in V$ into a "special container" H.
while H is not empty
-extract vertex r from H that has minimum distance from S.

- relax all of V 's neighbours that are still in H.

What Kind of thing is H ?
Operations:
init ()
insert (v, k)
extract M in ()

- removes and returns the (element, key) pair with minimum Key value in H.
H is a Priority Queue. ADT -defined by the operations above.

How can H be implemented?

