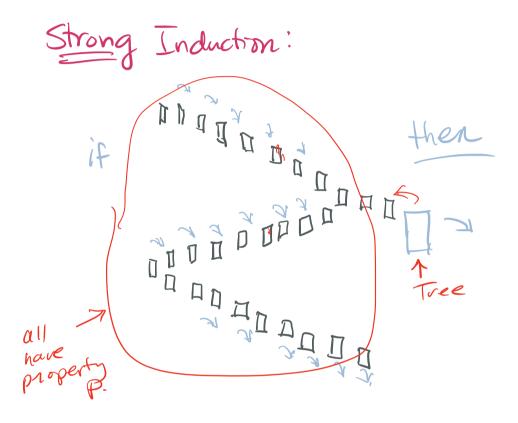
Having statements
$$I + I$$

Toduction Tobase care (needs
step
(needs h be proved)
 $P(i) \Rightarrow P(i+1)$.
Then we have an "algorithm" for Writing a
proof for $P(n)$ for any n , $n \ge base case$.
It must be a statement about integers
... but statements about graphs can be
Statement: All remarks undirected
Statement: All remarks $T = (V, E)$
have $|E| = |V| - |$

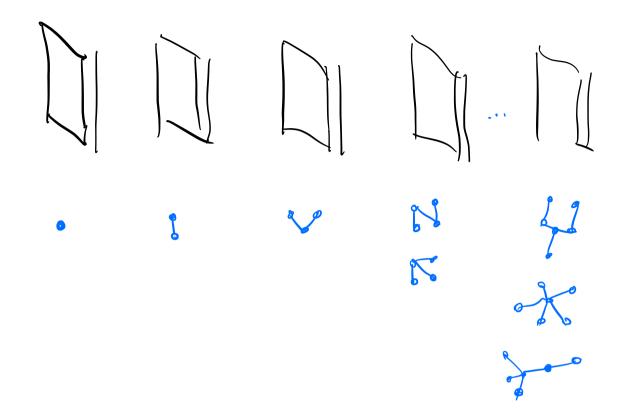
Statement:
$$\forall n, n \ge 1$$
, if $T = (Y,E)$ is
an acyclic undirected graph on
vertices, then $|E| = |n-1|$.

We would normally use Strong Induction for graphs. Weak Induction: show if is then in



Claim: ≠n≥1, if T is a tree on [V] vertices, then Thas NI-1 edges. Proof: Base case: 7 m = 0.

(Fix n): Let n be an integer > . Ind Hyp: Suppose "all trees of IVI < n have IVI-I edges" (weak induction: all trees of size NI-I have property) Ind Step: The any tree on IVI=n vertices Let $N_1 + N_2 = \Omega$ Let v be any vertex $N_{1} - 1 + N_{2} - 1$ Of degree 1 mT. edges. remove renter + edge. set minus. ie n.+n2-2 n-1 vertices Then edges. has Adding back Then the Ind Hyp applies to Thu The has n-2 edges by Ind Hyp and n-2+1 edge (adding the one edyes. has re n-1 edges. that connected or to rest) ie Thas n vertices and n-1 edges.



Proof: Strong Induction on number of vertices in the tree.

Base: If T= • h=1 and num edges m=0. So claim is true for this case.

Ind step: Let n' be a value > 1.

Ind Hyp:
$$\forall n < n'$$
, each tree of size n
has n-1 edges.
Let T be any tree of size n'.
Since n'>1, T has at least 2
vertices and at least 1 edge
(since T is connected).
det (u,v) be an edge m T.
Then T \S (u,v) } is the tree
minus the edge, so is a forest of
two trees T₁ + T₂, with number of vertices
n, and n₂, respectively.
Note n₁+n₂ = n₂ | ≤ n₁ < n' | ≤ n₂ < n'
°. T₁ has n₁-1 edges
T₂ has n₂-1 edges.
Eo number of edges in T
= (n₁-1)+(n₂-1)+1 = N'-1
where the edge is not the edges in T, the edges in T, E, edges in T, T, edges in T, t in the tree in tree in the tree in t