Induction - Review
Dominoes.

* I. If the $n^{\text {th }}$ domino topples, so does the $n+1^{\text {st }}$
* II The first domino topples \leftarrow Base.

If we know I and II then...
$\forall n$, we can construct a proof that all dominoes from 1 to n topple:

Rationale
"1. d_{1} topples
2. d_{1} topples $\Rightarrow d_{2}$ topples - II, instantiation
3. d_{2} topples
4. d_{2} topples $\Rightarrow d_{3}$ topples - II, instantiation
5. d_{3} topples 3,4, MP.

2n-3. d_{n-1} topples
$2 n-2, d_{n-1}$ topples $\Rightarrow d_{n}$ topples
$2 n-2 . d_{n}$ topples."

Having statements $\frac{I}{T}+\frac{\pi}{\sqrt{n}}$
Induction Step
(needs t be proved)

$$
P(i) \rightarrow P(i+1) \text {. }
$$

base case (needs to be proved)

Then we have an "algoritinn" for writing a
proof for $P(n)$ for any $n, n \geqslant$ base case!
It must be a statement about integers
... but statements about graphs can be
Statements about integers...
Statement: All ran acyclic en graphs $T=(V, E)$ have $|E|=|V|-1$

Statement: $\forall n, n \geqslant 1$, if $T=(V, E)$ is an acyclic undirected graph on vertices, then $|E|=n-1$.

We would normally use Strong Induction for graphs.
Weak Induction: show if i
Strong Induction:

Claim: $\forall n \geqslant 1$, if T is a thee on $|V| v e r t i c e s$, then T has $\underbrace{|\mid-1}_{m}$ edges.
Proof:

$$
n=1
$$

Base case: $T=0 \quad m=0$.
(Fix n): Let n be an integer >1.
Ind Hyp: Suppose
"all trees of $|N|<n$ have $|N|-1$ edges."
(weak induction: all thees of size NI -1 have in
Ind Step: property).
Let T be any tree on $|V|=n$ vertices
$n_{1}+n_{2}=n$ Let r be any vertex

$$
n_{1}-1+n_{2}-1
$$

edges.
S
ie $n_{1}+n_{2}-2$
edges. Then TV has $n-1$ vertices.
Adding back
in Then the Ind Hyp applies to Tiv we get. $n_{1}+n_{2}=1$
edge. $\Rightarrow T$ has $n-2+1$ edge (adding, the one is $n-1$ that connected edges. v to rest)
ie T has n vertices and $n-1$ edges.

-

!

$\%$

of 5

Claim: $\forall n \geqslant 1$, every tree with n nodes has $n-1$ edges.

Proof: Strong Induction on number of vertices in the tree.

Base: If $T=0, n=1$ and num edges $m=0$.
So clam is true for this case.

Ind Step: Let n^{\prime} be a value >1.

Ind Hyp: $\forall n<n^{\prime}$, each tree of size n has $n-1$ edges.
Let T be any tree of size n^{\prime}. Since $n^{\prime}>1$, T has at least 2 vertices and ot least 1 edge (Since T is connected).

Let (u, v) be an edge in T.
Then $T \backslash\{(u, v)\}$ is the tree minus the edge, so is a forest of two trees $T_{1}+T_{2}$, with number of vertices n_{1} and n_{2}, respectively.
Note $n_{1}+n_{2}=n, 1 \leq n_{1}<n^{\prime}, 1 \leq n_{2}<n^{\prime}$
$\therefore T_{1}$ has $n,-1$ edges
T_{2} has $n_{2}-1$ edges.
co number of edges in T

$$
=\underbrace{\left(n_{1}-1\right)}_{\text {edges in } T_{1}}+\operatorname{un}_{\substack{\text { edges in } \\ T_{2}}}^{\left(n_{2}-1\right)}+\operatorname{un}_{(u, v)}^{(\underline{1} x}
$$

