Dynamic Programming

- called that because Richard Bellman, researcher in 1940's and 1950's, needed a term that would impress the US Secretary of Defense, who did not like "research" or "math"
"Program" here refers to program (order) of evaluation.
"Dynamic" means it changes over time li.e. during execution of the "program" of evaluations.

Example 1:

$$
\begin{aligned}
& F_{i b}(0)=F_{i b}(1)=1 \\
& F_{i b}(n)=F_{i b}(n-1)+F_{i b}(n-2), \forall n>1
\end{aligned}
$$

Write a program That computes Fib (n).

$$
1123 \quad 3 \quad 8 \quad 13 \quad 21 \quad 33 \quad 54
$$

1. Straight forward Recursion

Fib (n)
if $n==0$ or $n==1$ return 1 return $F_{i b}(n-1)+F_{i b}(n-2)$

Evaluation Tree ("calls" tree)

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-2)+O(1) \\
&= \frac{2 T(n-2)}{1}+T(n-3) \\
&= \frac{4 T(n-4)}{8 T(n-6)} \\
& \cdots \quad 16 T(n-8) .
\end{aligned}
$$

Tree grows exponentially, as does the running time, as n gets langer.

A better idea...

- Memo-ize the results
- don't recompute, just look up results that have already been computed.

$$
F=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Fib2(n)

$$
\begin{aligned}
& F=0|0| 0|0| 0|0| 0|0| 0|0| 0 \\
& F[0]=1 ; F[1]=1 ;
\end{aligned}
$$

return fibhelper (F, n)
fibhelpen (F, n)
if $F[n]==0 \quad x$ not yet computed

$$
\begin{aligned}
F[n]= & \text { fibhoper }(F, n-1)+ \\
& \text { fibhelper }(F, n-2)
\end{aligned}
$$

return $F[n]$.
/* it is recensive, but always looks to see if F has already populated $F[i]$ with a_{n} answer - it does not repeat evaluation $* /$

But in this case we know we will need all values of $F, F[0]$ to $F[n-1]$.
In this case, we also know exactly what values we need to compute $F[i] \quad(F[i-1]$ and So a viable ordering to compute $F[i-2])$ in is:
$F[0], F[1], F[2], F[3], \ldots F[i], \ldots$

$$
\begin{aligned}
& \text { Fib3(n) } \\
& \quad F=[0,0, \cdots, 0] \\
& F[0]=1 ; F[1]=1 \\
& \text { for } i=2 \text { to } n \\
& F[i]=F[i-1]+F[i-2]
\end{aligned}
$$

return $F[n]$

Dynamic Programming
... is an algorithm mi approach whose correctness is based on a recurrence (such as $F[i]=F[i-1]+F[i-2])$ and where the subproblems have dependencies that are not circular (may be treelike) allowing us an evaluation order to memorize in.

DP is smart recursion.
Egg. Longest Increasing Subsequence (LIS)
Input: an array $A[1 . . n]$ of ints

$$
\text { Egg. } A=\left[\begin{array}{llllllll}
18 & 4 & 13 & 6 & 2 & 9 & 29 & 14
\end{array}\right]
$$

Output: max value of K, length of longest Subsequence (not new. contiguous) of ints that appear in increasing order in A.

$$
\begin{aligned}
& \text { Eg } 4=4,6,9,14 \\
& 1+0 \\
& 4 \\
& A[j] \quad x A[j] \\
& 1+1 \\
& 2 \\
& \text { if } j>n \\
& \text { if } A[i] \geqslant A[j] \\
& \max \left\{\begin{array}{l}
\operatorname{LIS}(i, j+1) \\
1+L I S(j, j+1)
\end{array}\right\} \text { otherwise } \\
& \text { Adj] will be in lat. }
\end{aligned}
$$

where $L I S(i, j) \stackrel{\text { def }}{=}$ length of longest increasing Subsequence of $A[j \ldots n]$ where all elements are $\geqslant A[i]$

What order can we fill in the table?
fill in one column at a time.

Fast LIS (A $[1 \ldots n])$

$$
A[0]=-\infty
$$

for $i=0$ to n

$$
\operatorname{LIS}[i, n+1]=0
$$

for $j=n$ downto 1
for $i=0$ to $j-1$

$$
\begin{aligned}
& \text { Keep }= 1+\operatorname{LIS}[j, j+1] \\
& \text { skip }= \operatorname{LIS}[i, j+1] \\
& \text { if ALi] } \because \text { A }[j] \\
& \qquad L S[i, j]=\text { Skip } \\
& \text { else LIS }[i, j]=\max (\text { Keep, SKip })
\end{aligned}
$$

return $45[0,1]$

Longest Common Subsequence
Eg $\quad A B B A C B C \quad B C B A C C B$

- in order, but not' necessarily contiguous

