Divide \& Conquer Algorithmic Approach
Recall: Mergesort is the exemplar
Recall: Under certain circumstances, the Master Theorem helps us analyze these algorithms.

Divide 8 Conquer Paradigm

1. Divide the input into smaller subprablems
2. Conquer the subproblems, using recursion
3. Combine the solutions of subproblem into solution for original problem.

Problem: Counting Inversions
Input: array A of n distinct integers.
Output: the number of inversions of A

Inversions are:
$\begin{array}{lllll}1,3 & 2,3 & 2,5 & 2,4 & 4,5\end{array} \quad$ \#incuersions $=5$

Why are we interested?

- recommendation algorithms

Brute Force algorithm to count inversions:

BF_Count Inversions (array A)

* Output $=$ number of pairs of elements
/* that are out of order in A
mum $\operatorname{Inv}=0$
for $i=1$ to $n-1$ do
for $j=i+1$ to n do

$$
\begin{gathered}
\text { if } A[i]>A[j] \quad \begin{array}{ccc}
7 & \ldots & 3 \\
\text { num } \operatorname{Inv}++
\end{array}
\end{gathered}
$$

return numInv.

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

$$
\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}
$$

Running time? $O\left(\sum_{i=1}^{n-1} i\right)=O\left(n^{2}\right)$

Counting Inversions using Divide be Conquer

recursion: 4

recursion: $2+1=3$

- Divide A into left-half and right half
- count inversions in left half
- count inversions in right half
- count inversions between the two halves
return sum of these 3. "Split" inversions

Merge - and_Count_Split_Inversions (C, D)

* C and D are sorted lists of length $\frac{n}{2}$

I* Sum, $\forall d \in D$, \#elemerts $c \in C$ where /* $d<c$, and output B, contents of /* C and D in sorted order 1* Simplifying assumption: $|C|=|D|$.
$i=1 \quad j=1 \quad$ split Inv $=0$
for $K=1$ to n do
if $C[i]<D[j]$

$$
B[K]=C[i]
$$

$$
i=i+1
$$

else

$$
\begin{aligned}
& B[k]=D[j] j \quad j=j+1 \\
\rightarrow & \text { Split Inv } t=\frac{n}{2}-i+1
\end{aligned}
$$

return (B split Inv)
Running Time: megesort: $T(n)=2 T(1 / 2)+n$

$$
n \in \theta\left(n^{\prime}\right) \therefore
$$

by case 2 of MT, Mengesort-with 1
MergeSort_and_Count_Inversions (A) $\begin{gathered}\text { Lnuensim } \\ \text { country } \\ \text { runs in }\end{gathered}$
I* A is an array of n integers $\theta(n \log n)$
/* simplifying assumption: n is even

$$
\underbrace{\left.\begin{array}{lll}
3 & 2 & 5
\end{array} \right\rvert\, 4876}
$$

for you to do

$$
13 \mid 25
$$

$$
4_{\uparrow} \prod_{1}, 2 \sqrt{5}
$$

$$
\begin{aligned}
& 36 \\
& \pi_{0} \\
& 2 \\
& 0
\end{aligned}
$$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 5 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Running Time?

$$
\left[\begin{array}{ll}
\frac{1}{3} & 2 \\
3 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
\frac{2}{3} & 1 \\
\frac{3}{3} & 1
\end{array}\right]=\left[\begin{array}{ll}
\frac{2+6}{9} & \frac{3}{4}
\end{array}\right] \leftarrow
$$

Strassen's Matrix Multiplication
X, Y are $n \times n$ matrices (n^{2} entries

Illustrating with 2×2 matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

Problem: Matrix Multiplication
Input: $2 n \times n$ matrices X and Y
Output: the matrix product $X \cdot Y$

Straightforward Matrix Malt (X, Y)
1* input: $n \times n$ matrices X and Y
$1 *$ output: $n \times n$ matrix $Z=X \cdot Y * /$
for $i=1$ to n do
for $j=1$ to n do

$$
Z[i][j]=0
$$

for $k=1$ to n do

$$
\begin{aligned}
Z[i][j]+ & =X[i][k] \\
& * Y[k][j]
\end{aligned}
$$

return Z.
Running time? $O\left(n^{3}\right)$

Strassen's cool idea....

First, do it recursively
Rec Mat Mull
1* input: $n \times n$ matrices X and Y
/* output: $Z=X \circ Y$
/* assume: n is a power of 2 if $n=1$
return the $|X|$ matrix $X[1][1] * Y[\cdot][1]$
else
$A, B, C, D=$ submatrices of X, as above
$E, F, G, H=$ submatrices of Y, as above reansively compute the eight matrix products as above
return the result

$$
T(n)=8 T\left(\frac{n}{2}\right)+n^{2}
$$

Master Than: $n^{2} \in \underset{n^{3}}{\left(n^{\log _{8} 8}\right)} \therefore T(n) \in \theta\left(n^{3}\right)$

$$
n^{3}
$$

$$
n^{2} \in O(n \stackrel{3-2}{=}
$$

So why is it interesting?

$$
\left[\begin{array}{ll}
A & B_{0} \\
C & D_{0}
\end{array}\right] \cdot\left[\begin{array}{cc}
E & F \\
i & G \\
r_{1} & H
\end{array}\right]=A E+B G A F A H
$$

Strassen's crazy idea: $\exists 8 \quad \frac{n}{2} \times \frac{n}{2}$-sized matrix products to compute, but they are not independent... can we do fewer matrix mulls and get all 8

Submatrices?

$$
\begin{array}{ll}
P_{1}=A \cdot(F-H) & P_{5}=(A+D) \cdot(E+H) \\
P_{2}=(A+B) \cdot H & P_{6}=(B-D) \cdot(G+H) \\
P_{3}=(C+D) \cdot E & P_{7}=(A-C) \cdot(E+F) \\
P_{4}=D \cdot(G-E) &
\end{array}
$$

Compute the above. Car we now extract $A E+B G, \quad A F+B H, \quad C E+D G, \quad C F+D H ?$

$$
\begin{aligned}
& A E+B G=P_{5}+P_{4}-P_{2}+P_{6} \\
& =(A+D) \cdot(E+H)+D \cdot(G-F)-(A+B) \cdot H+(B-D) \cdot(G+H) \\
& =A E A+D E+D H+D G-D E-A H-B G+B H-D G-D H \\
& A F+B H=P_{1}+P_{2} \\
& C E+D G=P_{3}+P_{4} \\
& C F+D H=P_{1}+P_{5}-P_{3}-P_{7}
\end{aligned}
$$

Running time of Strassen's matrix Mull ry?
Algorithm.
which uses many Matrix additions and 7 matrix mults $\left(\frac{n}{2} \times \frac{n}{2}\right)$
as a function of n, for two $n \times n$ matrices:

$$
\begin{gathered}
T(n)=T T\left(\frac{n}{2}\right)+\quad n^{2} \\
n^{2} \in \quad\left(n^{\log _{2} 7}\right) \\
\text { ie } n^{2} \in O\left(n^{2,8074 \cdot 8}\right)
\end{gathered}
$$

Hence by case 1 of Master Theorem, Strassen's Matrix Mull algorithm runs in

$$
\theta\left(n^{2.8077}\right)
$$

