Balanced Binary Search Trees.

- BSTs are great dictionaries, but can become unbalanced which leads to $O(n)$ running time per operation.
\therefore we seek to do a little "housekeeping" as we go along to ensure the thee does not get out of balance...

Keeping it perfectly balanced....

if you have 11 items, the least-height thee has $h=3$

Keeping it balanced, but not perfectly...
Defn: The balance factor at a node is

$$
h\left(T_{r}\right)-h\left(T_{l}\right)
$$

where T_{r} is right subtree and T_{l} is left subtree.

Deft: An AVL tree is a BST where \forall nodes have balance factor $\in\{-1,0,1\}$

A note about tree height, $h(T)$. height is \# edges on longest leaf-root path.

$$
\begin{array}{ccc}
0 & 0 & {\left[\begin{array}{l}
\text { empty tree } \\
0
\end{array}\right.} \\
1 & 0 & -1
\end{array}
$$

Examples of AVL Hie, and not AVL tree

Two things that would make AVL tees interesting:
(1) Are They "balanced enough" that heights stay $O(\log n)$?
(2) Can we maintain "balance" (AVL-style) in time $O(\log n)$ per operation? (Insert, Delete, Search, Max, Min, Sue, Pred) may need rebalancing.

Tools for maintaining balance - AVL style:

L - rotation

(1) (2)

Single. rotations are local transformations.

double rotations are also
local

Single Rotation R

Each can be done in $O(1)$ time, but may propogate up ... total is $O(h)$. *

Is it an effective enough "rebalarcing" that the height is Kept small?

Theorem: \forall AVL nee T, $h(T)$

$$
\operatorname{Lg} n\rfloor \leq h(T)<1.4405 \lg (n+2)-1.3277
$$

Questions

1. Which of these BSTS are AVL?

* How might the rotations propogate up?

Wikipedia - AVL thee.

I* after inserting z as child of x, height of z 's subtree is now one more Than the $B F_{s}$ indicator//
for ($x=z \rightarrow$ parent; $x!=$ NuLL; $x=z \rightarrow$ parent)
if (z is a right child)
if $z \rightarrow B F>0 \quad / / x$ is right-heavy

$$
\begin{aligned}
& g=x \rightarrow \text { parent } \\
& \text { if } z \rightarrow B F<0 \\
& \quad w=\text { rotate } \operatorname{Right}[\operatorname{Lft}(x, z\} \\
& \text { else }
\end{aligned}
$$

$$
\omega=\operatorname{rotateLeft}(x, z)
$$

else

$$
\begin{aligned}
\text { if } & x \rightarrow B F<0 \\
& x \rightarrow B F=0
\end{aligned}
$$

break
ti $x \rightarrow B F$
$z=x$
continue
else /l z is a left child
if $\quad x \rightarrow B F<0$
$g=x \rightarrow$ parent
if $Z \rightarrow B F>0$
$\omega=$ rotate Left $\operatorname{Right}(x, z)$
else

$$
\omega=\text { rotate Right }(x, z)
$$

else

$$
\text { if } \begin{aligned}
x & \rightarrow B F
\end{aligned}>0
$$

break

$$
x \rightarrow B F=-1
$$

$$
z=x
$$

continue
$\omega \rightarrow$ parent $=g$
if $g!=$ NULL
$x==x \rightarrow$ parent \rightarrow
if (x is a left child) left

$$
g \rightarrow \text { left }=\omega
$$

eke $g \rightarrow$ right $=w$
else
ω is made root of tree
break

