Final Prep: Complexity Analysis
Rules I won't ask you to prove:
SBTLD: Strange but true Log Domination Rule, ie $\log ^{r} n \in O\left(n^{s}\right) \quad \forall r, \forall s>0$

Log Base is Irrelevant:

$$
\log _{a} n \in O\left(\log _{b} n\right) \quad \forall a, b>1
$$

Polynomial rule:
$f(n)$ a polynomial in n of degree k
$g(n)$ a polynomial in n of degree $K^{\prime} \geqslant k$

$$
\Rightarrow f(n) \in O(g(n))
$$

Note: logarithms do not appear in polynomials!

Let's prove the Reciprocal Rule
Suppose $f(n) \in O(g(n))$,

$$
\begin{aligned}
& \Rightarrow \exists c>0, n_{0}>0 \text { s.t. } f(n) \leqslant c \cdot g(n) \forall n \geqslant n_{0} \\
& \Rightarrow \frac{1}{c \cdot g(n)} \leqslant \frac{1}{f(n)} \quad \forall n \geqslant n_{0} \\
& \Rightarrow \frac{1}{g(n)} \leqslant c_{0} \frac{1}{f(n)} \forall n \geqslant n_{0}
\end{aligned}
$$

$\Rightarrow \frac{1}{g(n)} \in O\left(\frac{1}{f(n)}\right)$, demo'd by same c, n_{0} as for $f(n) \in O(g(n))$.

Let's prove the Sum Rule
Suppose $f_{1}(n) \in O(g(n))$ and $f_{2}(n) \in O(g(n))$
$\Rightarrow \exists c_{1}>0, n_{1}>0, c_{2}>0, n_{2}>0$ such that

$$
\begin{aligned}
& f_{1}(n) \leq c_{1} \cdot g(n) \quad \forall n \geqslant n_{1} \\
& f_{2}(n) \leq c_{2} \cdot g(n) \quad \forall n \geqslant n_{2} \\
\Rightarrow & f_{1}(n)+f_{2}(n) \leq c_{1} \cdot g(n)+c_{2} \cdot g(n) \\
& \forall n \geqslant \max \left(n_{1}, n_{2}\right) \\
\Rightarrow & f_{1}(n)+f_{2}(n) \leq\left(c_{1}+c_{2}\right) g(n) \quad \forall n \geqslant \max \left(n_{1}, n_{2}\right) \\
\Rightarrow & f_{1}(n)+f_{2}(n) \in O(g(n) \\
& e_{m D^{\prime} d} b y c=\left(c_{1}+c_{2}\right), n_{0}=\max \left(n_{1}, n_{2}\right) .
\end{aligned}
$$

Do some Big-Oh proofs:
Claim: $3 n^{2}+4 n+6 \in O\left(n^{2}-n\right)$, using deft.
Proof: $3 n^{2}+4 n+6 \leq 3 n^{2}+n^{2}+n^{2} \quad \forall n \geqslant 4$

$$
\begin{aligned}
& \leq 5 n^{2}+n^{2}-6 n \quad \forall n \geqslant 6 \\
& \leq 6 n^{2}-6 n \quad \forall n \geqslant 6 \\
& \leq 6\left(n^{2}-n\right) \quad \forall n \geqslant 6
\end{aligned}
$$

$\therefore 3 n^{2}+4 n+6 \in O\left(n^{2}-n\right)$ as demode by $c=6, n_{0}=6$.

Claim: $\log n \in O\left(\frac{n}{\log n}\right)$

Proof: Using the rules.

1. $\log ^{2} n \in O(n)$ SBTLD rule
2. $\frac{1}{\log n} \in O\left(\frac{1}{\log n}\right) \quad C F$
3. $\log n \in O\left(\frac{n}{\log n}\right)$ 1,2 Product Rule.

Claim: $2 n \lg n \notin O(n)$
Proof: Bloc. Suppose $2 n \lg n \in O(n)$
$\Rightarrow \exists c>0, n_{0}>0$ such that

$$
\begin{aligned}
& 2 n \lg n \leq c \cdot n \quad \forall n \geqslant n_{0} \\
\Rightarrow & \lg n \leq \frac{c}{2} \quad \forall n \geqslant n_{0} \\
\Rightarrow & 2^{\lg n} \leq 2^{c / 2} \quad \forall n \geqslant n_{0}
\end{aligned}
$$

ie $n \leq 2^{c / 2} \quad \forall n \geq n_{0}$, where c is a constant

$$
\Longrightarrow \varlimsup_{\text {contradiction }} 0 \cdot 02 n \lg n \notin O(n)
$$

Master Theorem
$T(n)=a T\left(\frac{n}{b}\right)+f(n)$ is defined on positive ints; $f(n)$ is a positive-valued function \forall pos ints n. $a \geqslant 1$

$$
b>1
$$

Then:
case 2: if $f(n) \in \theta\left(n^{\log _{b} a}\right) \Rightarrow T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$
case 3: if $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$
and $\exists c, O<c<1$ where $a \cdot f\left(\frac{n}{b}\right)<c \cdot f(n)$ (when n is sufficient ry large)

$$
\Rightarrow T(n) \in \theta(f(n))
$$

$$
\begin{aligned}
& T(n)=4 T\left(\frac{n}{2}\right)+n^{2} \log n \quad n^{\log _{2} 4}=n^{2} \\
& n^{2} \log n \notin O\left(n^{2-\varepsilon}\right) \\
& n^{2} \frac{\log n}{\nmid \theta\left(n^{2}\right)} \\
& n^{2} \log n \notin \Omega\left(n^{2+\varepsilon}\right)
\end{aligned}
$$

$\therefore M T$ is silent on this case.

$$
T(n)=4 T\left(\frac{n}{3}\right)+n^{2} \log n
$$

n^{2}

