
 

B Trees Nov 28 2022

Another Dictionary ADT solution

one favoured in situations where

dictionary is so large
it cannot be read into

memory in its entirety

in this case we seek to minimize the

number of disk transfers ie moving in

a page of data from the disk

a page is usually prettybig want to ensure

the data is useful

When we navigate a tree we identify the

next node to go to and read it in

a node should be page sized
ie quite

large how can we make nodes usefully

large useful for navigating the tree from

root to leaf



Definition A B tree T is a rooted

tree root is Ta root where

I A node x

x n number of keys in node x

x key an array i end ofkeys

x leaf true if x is a leaf

has no children

2 if bae leaf then so c i is

a pointer to x's ith child o si e son

3 The keys of a node separate the ranges of

the Keys of the children

t 3
ÉTTENETETE

4 All leaves have same depth which is heighth



5 I upper and lower bounds on number

of keys that a node can contain

lower bound t 1 keys t children

lower bound does not apply to root

root has 0 keys tree is empty

upper bound 2t 1 keys at children

A node is full if it has exactly 2t 1

keys

Eg t 2 nodes have 2,3 or 4 children

also known as a 2 3 4 tree

We made nodes as large as possible and still fit

into one page of memory
This reduces height of tree

Each time we step down a level in the tree

we do a disk swap We always go down to
a

leaf in B trees data is stored at leaf level



13 children
3 G M Pox innate

infidenon I

A C D E J K N.O R.S.T.U.tl 1.2

Insert B

G M.P X

A B C D E D k NO R.S.T.V.tl 1.2

split
insert

full node

a R.S UN

G M X

A B C D E I.k NO DR.S U.V 4.2

insert 2

G.M.T.P.it is full so split



P

G M TN

A.B.C.DE T.kto.NO Q.RS U 4.2

insert F

P

C G M T X

A B D E F JIL NO Q.RS IV 1.2

Notes on insertion into B trees

root can have fewer than t children Other

non leaf nodes must have t to 2t children

If root is full and an insertion is executed

the root node is split Other nodes have

a different behaviour



a non leaf node that is given a key to

insert checks if the appropriate child is

full if so the child is split the centre

key is brought into
the current node x

and insertion proceeds to the child node

Pseudo code for split insert Not Full and

Insert are given below



BTreeSplitChild x i y
x y is a's ith child Result will be

that children itt son are shifted left

It in x's list of children and each of

CA XD C i and NC City will have room

It for an insertion

node A new c new node

news leaf yes leaf

new can t l

for j I to t I

newc key if y key jtt
if y leaf

for j I to tt

news c j y Cjtt

y n t 1

for j on down to i

Key jtg x keys
xD Key i y key Ct
xx htt

Disk write y Disk write new Diskwrite x



BTree Insert T K

14 Insert key K starting at Froot H

r To root

if rn It 1

node s new node

Froot s

s leaf false
s n O

s C i r

BTree Split Child S I r

B Tree Insert NonFull S K

else
BTree Insert Non Full r K



BTree Insert Non Full x K

pseudocode with diagrams for insertion when

node is not full H

if a leaf
fifty

lki.tk IkAk
I Shift the back end of x's arrays
of children to make

room for I to be inserted into

its spot in sorted order

2 write k into its spot
3 x htt

else 11 x not a leaf has children too

1 Find the childiof x into which K

should be inserted Disk Read this child node

2 if x c i is full
BTree Split child x i c Ci

if K x key i

itt

BTreeInsertNonFull x c i K


