- Another "Dictionary ADT" solution.
- one favoured in situations where...
dictionary is so large it cannot be read into memory in its entirety
- in this case, we seek to minimize the number of disk transfers -ie moving in a page of data from the disk.
- a page is usually pretty big - want to ensure the data is useful.

When we navigate a tree, we identify the next node to go to and read it in... ... a node should be page sized ie quite large... how can we make nodes usefully large Luseful for navigating the tree foo root to leaf)?

Definition: $A \quad B$-tree T is a rooted tree (root is $T \rightarrow$ root) where

1. \forall node x
$x \rightarrow n=$ number of Keys in node x
$x \rightarrow$ key $=$ an array $[1 \ldots x \rightarrow n]$ of keys
$x \rightarrow$ leaf $=$ true if x is a leaf (has no children
2. if $: x \rightarrow$ leaf, then $x \rightarrow c[i]$ is a pointer to $x^{\prime} s i^{\text {th }}$ child $(0 \leq i \leq x \rightarrow n)$
3. The keys of a node separate the ranges of the Keys of the children

$$
t=3
$$

4. All leaves have same depth, which is height h.
5. \exists upper and lower bounds on number of Keys that a node can contain

- lower bound $t-1$ Keys (t children)
- lower bound does not apply to root
- root has 0 keys \Leftrightarrow tree is empty.
- upper bound $=2 t-1$ Keys, (at children) A node is full if it has exactly $2 t-1$ Keys.

Eg $t=2 \Rightarrow$ nodes have 2,3, or 4 children - also known as a 2.3 .4 tree.

We made nodes as large as possible and still fit into one page of memory.
This reduces height of tree
Each time we step down a level in the tree, we do a disk swap. We always go down to a leaf (in B-trees, data is stored at leaf-level)

-A.B.C.D.E. J.K. N.O. QQ.S.T.U.V. .Y.Z.
(insert L)
G.M.T.P.X is full, so split.
 (insert F)

Notes on insertion int B-trees:

- root can have fewer than t children. Other non-leaf nodes must have t to $2 t$ children
- If root is full and an insertion is executed, the root node is split. Other nodes have a different behaviover.
- a non -leaf node ${ }_{\wedge}^{x}$ that is given a key to insert checks if the appropriate child is full - if so, the child is split, the centre key is brought into the current node x, and insertion proceeds to the child node.

Pseudo code for split, insert, Not_Full, and Insert are given below.

BTree Split Child (x, i, y)
I* y is x^{\prime} s $i^{\text {th }}$ child. Result will be / $*$ that children $i+1, x \rightarrow n$ are shifted left 1* in x 's list of children, and each of $C * x \rightarrow C[i]$ and $x \rightarrow C[i+1]$ will have room 1* for an insertion
node* new $=$ new node

$$
\begin{aligned}
& \text { new } c \rightarrow \text { leaf }=y \rightarrow \text { leaf } \\
& \text { new } c \rightarrow n=t-1
\end{aligned}
$$

for $j=1$ to $t-1$

$$
\text { new } \rightarrow \operatorname{key}[j]=y \rightarrow \operatorname{key}[j+t]
$$

if $!y \rightarrow$ leaf
for $j=1$ to t

$$
\text { new } c \rightarrow c[j]=y \rightarrow c[j+t]
$$

$$
y \rightarrow n=t-1
$$

for $j=x \rightarrow n$ downto i

$$
\begin{aligned}
& x \rightarrow \text { Key }[j+1]=x \rightarrow \text { Key }[j] \\
& x \rightarrow \text { Key }[i]=y \rightarrow \text { Key }[t] \\
& x \rightarrow n++
\end{aligned}
$$

Disk write (y); Disk write (new); Diskwrite (x).

Bree Insert (T, k)
/* Insert key K, starting at $T \rightarrow$ root */

$$
r=T \rightarrow \text { root }
$$

if $r \rightarrow n=2 t-1$

$$
\begin{aligned}
& \text { node } * S=\text { new node } \\
& T \rightarrow \text { root }=S \\
& S \rightarrow 1 \text { ea }=\text { false } \\
& S \rightarrow n=0 \\
& s \rightarrow C[1]=r
\end{aligned}
$$

BTree Split Child $(s, 1, r)$
B Tree Insert Non Full (s, k)
else BTree Insert Non $\operatorname{Full}(r, k)$

BTree Insert Non Full (x, k)

* pseudocode with diagrams for insertion when
/* node is not full */
if $x \rightarrow$ leaf

| k_{1} | $k_{i}\left\|\quad k_{i+1}\right\| k_{i+2} \mid \ldots$ |
| :--- | :--- | :--- |

1. Shift the back end of x 's arrays of children to make room for K to be inserted into its spot in sorted order
2. write K into its spot
3. $x \rightarrow n+t$
else II x not a leaf... has children, too
4. Find the child ${ }^{i}$ of x into which K should be inserted - DiskRead this child node
5. if $x \rightarrow C[i]$ is full

BTree Split child $(x, i, x \rightarrow c[i])$
if $K>x \rightarrow$ Key $[i]$

$$
i+t
$$

Bree Insert N an Full $(x \rightarrow c[i], k)$

