Computer Science 162 Practice for Final Exam

April 9, 2018

1. For each regular expression given below, give a DFA that accepts the language so described. When possible, find a NFA that is smaller than the DFA for the same language.

$$DFA: 20 3 6 NFA: 20 3 NFA: 20 NFA: 20 NFA: 20 NFA: 20 NFA: 20 NFA: 20 NF$$

(b)
$$(aa+b)*(b+a)$$

NFA; a

b, a

Kinda tricky!

(d) $((0+1)(0+1))^*$

2. Use non-determinism in an NFA that accepts the following language: $\{w \in \{a,b,c\}^* | w \text{ has an } a \in \{a,b,c\}^* | w \text{ ha$ even number of as or contains cca as a substring (or both)}.

- 3. For each of the string descriptions below, give a regular expression for the language of such strings. Assume the alphabet is $\{a, b, c\}$ unless otherwise stated.
 - (a) All strings that contain baab or baaab as a substring. (a+b+e)* (baab + baaab) (a+b+e)*
 - (b) Strings where no b is followed by a.

(c) Strings over $\{a, b, c\}$ that have at least three cs.

trings over
$$\{a, b, c\}$$
 that have at least three cs.

(o+b)* c (a+b)* c (a+b)* c (a+b)* c (a+b+c)*

(d) Strings that have no three cs in a row – that is, do not have ccc as a substring.

$$(a+b+ca+cb+cca+ccb) \times (c+cc+\epsilon)$$

(e) Strings that have no cs and an odd number of as. $b^*(ab^*ab^*)^*ab^*$

(f) The strings over $\{a, b\}$ accepted by the DFA that has states q1, q2, and q3, where <math>q1 is the start state, and where the set of accept states is $\{q3\}$, and where the transition function is the following:

me monowing.		
state	input	destination state
$\overline{q1}$	a	q1
q1	b	q2
q2	a	q1
q2	b	q3
q3	a	q1
q3	b	q3
	•	•

Answer: (a+b)*66