Computing Science 162: Notes on Big-Oh
An example proof that one function is in the big-Oh of another:
Claim:
16 n2 + 5n ∈ O(n2-1)
Proof:
16 n2 + 5n ≤
16 n2 + 5n2, ∀ n ≥ 1
⇒16 n2 + 5n ≤
31n2, ∀ n ≥ 1
⇒16 n2 + 5n ≤
62(n2/2), ∀ n ≥ 1
⇒16 n2 + 5n ≤
62(n2/2 - 1 ) + 62, ∀ n ≥ 1
⇒16 n2 + 5n ≤
62(n2/2 - 1 ) + (n2/2 - 1), ∀ n ≥ 16, since
62 ≤ 127 ≤ (n2/2 -1) when n ≥ 16
⇒16 n2 + 5n ≤
63(n2/2 - 1 ) ∀ n ≥ 16
⇒
16 n2 + 5n ∈ O(n2-1)
as witnessed by c=63 and n0=16.