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Combinatorial Proofs

Two types:

1. Two ways of counting one object

2. A bijection proves two objects equally
numerous
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Combinatorial Proof: Type 1

∑

k

(

n

k

)

= 2n
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Combinatorial Proof: Example (Type 1)

Proof:
∑

k

(

n
k

)

= number of subsets of n-set = 2n
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Combinatorial Proof: Generally

Given an identity

F (n, k) = G(n, k)

...find a combinatorial object
show that it is counted by F (n, k)
show that it is counted by G(n, k)
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Combinatorial Proof: Slightly harder

Lemma:
∑

k≥0

(

n

2k

)(

2k

k

)

2n−2k =

(

2n

n

)

The Best Proof is Combinatorial – p.



∑

k≥0

(

n

2k

)(

2k
k

)

2
n−2k

=
(

2n
n

)

Try: The number of words of length n over
alphabet Γ = {a, b, c, d} where #a’s = #b’s.

The Best Proof is Combinatorial – p.



Proof, cont’d

Clearly
∑

k≥0

(

n
2k

)(

2k
k

)

2n−2k = #(length n words
over {a, b, c, d} where # a = # b)
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#(length n words, #a’s =# b’s)=
(

2n
n

)

• Let a = 00, b = 11, c = 01, d = 10.
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#(length n words, #a’s =# b’s)=
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• Let a = 00, b = 11, c = 01, d = 10.
• Observe: a bitstring encoding of a string over
{a, b, c, d} with #a’s=#b’s has #0’s = #1’s.
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#(length n words, #a’s =# b’s)=
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• Let a = 00, b = 11, c = 01, d = 10.
• Observe: a bitstring encoding of a string over
{a, b, c, d} with #a’s=#b’s has #0’s = #1’s.

• Indeed: every bitstring with #0’s = #1’s is an
encoding of an a, b, c, d-string with #a’s = #b’s.
0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0
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• Let a = 00, b = 11, c = 01, d = 10.
• Observe: a bitstring encoding of a string over
{a, b, c, d} with #a’s=#b’s has #0’s = #1’s.

• Indeed: every bitstring with #0’s = #1’s is an
encoding of an a, b, c, d-string with #a’s = #b’s.
0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0

• 01 10 10 11 11 01 00 00
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#(length n words, #a’s =# b’s)=
(

2n
n

)

• Let a = 00, b = 11, c = 01, d = 10.
• Observe: a bitstring encoding of a string over
{a, b, c, d} with #a’s=#b’s has #0’s = #1’s.

• Indeed: every bitstring with #0’s = #1’s is an
encoding of an a, b, c, d-string with #a’s = #b’s.
0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0

• 01 10 10 11 11 01 00 00
• c d b b c a a
• Bijection! ... and there are

(

2n
n

)

such
bitstrings. 2
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Reed-Dawson Identity

Reed-Dawson:

∑

k≥0

(

n

k

)(

2k

k

)

(−2)n−k =

{

0 if n odd
(

n
n/2

)

if n even.
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Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)
Proved in Riordan’s book by solving a recurrance
(1968)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)
Proved in Riordan’s book by solving a recurrance
(1968)
Proved Concrete Mathematics using
hypergeometric series (Grahan, Knuth and
Patashnik, 1989)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)
Proved in Riordan’s book by solving a recurrance
(1968)
Proved Concrete Mathematics using
hypergeometric series (Grahan, Knuth and
Patashnik, 1989)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)
Proved in Riordan’s book by solving a recurrance
(1968)
Proved Concrete Mathematics using
hypergeometric series (Grahan, Knuth and
Patashnik, 1989)

The Best Proof is Combinatorial – p. 11



Reed-Dawson Identity

Reed-Dawson Identity is also known as Knuth’s
Old Sum.
Proved by Jonassen and Knuth (1978).
Proved by Ira Gessel (reported in Greene and
Knuth 1981)
Proved by C.C. Rousseau (reported in Greene
and Knuth 1981)
Proved using an Euler transformation by
Prodinger (1994)
Proved in Riordan’s book by solving a recurrance
(1968)
Proved Concrete Mathematics using
hypergeometric series (Grahan, Knuth and
Patashnik, 1989)

The Best Proof is Combinatorial – p. 11



The Combinatorial Proof

∑

k≥0

(

n

k

)(

2k

k

)

(−2)n−k =

{

0 if n odd
(

n
n/2
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if n even.

The Best Proof is Combinatorial – p. 12



The Combinatorial Proof

∑

k≥0

(

n

k

)(

2k

k

)

(−2)n−k =

{

0 if n odd
(

n
n/2

)

if n even.

Γ = {a, b, c, d, C, D}

The Best Proof is Combinatorial – p. 12



The Combinatorial Proof

∑

k≥0

(

n

k

)(

2k

k

)

(−2)n−k =

{

0 if n odd
(

n
n/2

)

if n even.

Γ = {a, b, c, d, C, D}
L = { words over Γ that have #a’s = #b’s}

The Best Proof is Combinatorial – p. 12



The Combinatorial Proof

∑

k≥0

(

n

k

)(

2k

k

)

(−2)n−k =

{

0 if n odd
(

n
n/2

)

if n even.

Γ = {a, b, c, d, C, D}
L = { words over Γ that have #a’s = #b’s}
A word in L is even if it has an even number of
lower-case letters, odd otherwise.
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The Combinatorial Proof

t = | #(even words) - #(odd words) | = parity
difference
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The Combinatorial Proof

t = | #(even words) - #(odd words) | = parity
difference
One way to compute t:
sum, for each k, the number of words with k
lowercase letters [ *(-1) if k odd]
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Computing t
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Computing t

For a given k, choose from n places for the
lowercase letters.
From the Lemma, there are

(

2k
k

)

way to fill those
k places so that #a’s = #b’s.
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Computing t

For a given k, choose from n places for the
lowercase letters.
From the Lemma, there are

(

2k
k

)

way to fill those
k places so that #a’s = #b’s.
Now select a subset of the n − k remaining place
to be filled by C. The remaining places must be
filled by D.
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Computing t

For a given k, choose from n places for the
lowercase letters.
From the Lemma, there are

(

2k
k

)

way to fill those
k places so that #a’s = #b’s.
Now select a subset of the n − k remaining place
to be filled by C. The remaining places must be
filled by D.
Hence

t =
∑

k≥0

(

n

k

)(

2k

k

)

2n−k × (−1)k.

I.e., t = the right side of the Reed-Dawson
identity.
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Another way of computing t

t = | #(even words) - #(odd words) |.

The Best Proof is Combinatorial – p. 15



Another way of computing t

t = | #(even words) - #(odd words) |.
Define φ(w) = change case of the rightmost
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Another way of computing t

t = | #(even words) - #(odd words) |.
Define φ(w) = change case of the rightmost
c, C, d, or D in w.
E.g. φ(abCcdDaCb) = abCcdDacb

For every word w, w and φ(w) have different
parity except when w = φ(w)
i.e. when w is only a’s and b’s.
t = number of strings over {a, b} of length n with
#a’s = #b’s
t = 0 if n is odd,

(

n
n/2

)

otherwise. 2
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Conclusion

There’s no proof so satisfying as a combinatorial
proof.
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Open Problem:

Number of Spanning Trees of an n-cube =
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i≥0

(2i)(
n

i)
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Conclusion

There’s no proof so satisfying as a combinatorial
proof.
Open Problem:

Number of Spanning Trees of an n-cube =
∏

i≥0

(2i)(
n

i)

Mwaahaahaahaahaaaaaa!
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