
Understanding Data Flow Diagrams
Donald S. Le Vie, Jr.

Data flow diagrams (DFDs) reveal relationships among
and between the various components in a program or
system. DFDs are an important technique for modeling a
system’s high-level detail by showing how input data is
transformed to output results through a sequence of
functional transformations. DFDs consist of four major
components: entities, processes, data stores, and data
flows. The symbols used to depict how these components
interact in a system are simple and easy to understand;
however, there are several DFD models to work from,
each having its own symbology. DFD syntax does remain
constant by using simple verb and noun constructs. Such
a syntactical relationship of DFDs makes them ideal for
object-oriented analysis and parsing functional
specifications into precise DFDs for the systems analyst.

DEFINING DATA FLOW
DIAGRAMS (DFDs)

When it comes to conveying how information data flows
through systems (and how that data is transformed in the
process), data flow diagrams (DFDs) are the method of
choice over technical descriptions for three principal
reasons.

1. DFDs are easier to understand by technical and
nontechnical audiences

2. DFDs can provide a high level system overview,
complete with boundaries and connections to other
systems

3. DFDs can provide a detailed representation of
system components1

DFDs help system designers and others during initial
analysis stages visualize a current system or one that
may be necessary to meet new requirements. Systems
analysts prefer working with DFDs, particularly when
they require a clear understanding of the boundary
between existing systems and postulated systems. DFDs
represent the following:

1. External devices sending and receiving data
2. Processes that change that data
3. Data flows themselves
4. Data storage locations

The hierarchical DFD typically consists of a top-level
diagram (Level 0) underlain by cascading lower level
diagrams (Level 1, Level 2…) that represent different
parts of the system.

Before There Were DFDs…

Flowcharts and Pseudocode
Years ago, programmers used a combination of
flowcharts and pseudocode (a combination of English
and the programming language being written) to design
programs. Pseudocode can actually be simpler to read
than corresponding flowcharts, as Figure 1 illustrates.

Figure 1. A Flowchart With Corresponding
Pseudocode for Watering House Plants.

Entity-Relationship Diagrams (ERDs)
Entity-Relationship Diagrams (ERDs) are another way
of showing information flow for a process. An ERD
shows what data is being used in the process or program,
and how the files are related. The E-R (entity-
relationship) data model views the real world as a set of
basic objects (entities) and relationships among these
objects. It is intended primarily for the database design
process by allowing for the specification of an enterprise
scheme. This enterprise scheme represents the overall
logical structure of the database. ERDs do not show any
program functions, nor data flow. An ERD is shown in
Figure 2.

Start

Fill
water
can

Pseudocode
DO Fill_Water_Can
IF Plant_Soil_Moist THEN
 IF Plant_Type = Succulent THEN
 DO Add_Some_Water
 ELSE
 Do Add_Lots_of_Water
 ENDIF
ENDIF

Is plant
soil

moist?
Done

Yes

No

Is plant
a

succulent

Add
some
water

Add lots
of water

Yes

No

Figure 2. An Example of an Entity-Relationship
Diagram.

Data Flow Diagrams
Data flow diagrams have replaced flowcharts and
pseudocode as the tool of choice for showing program
design. A DFD illustrates those functions that must be
performed in a program as well as the data that the
functions will need. A DFD is illustrated in Figure 3.

Figure 3. An Example of a Data Flow Diagram.

Defining DFD Components

DFDs consist of four basic components that illustrate
how data flows in a system: entity, process, data store,
and data flow.

Entity
An entity is the source or destination of data. The source
in a DFD represents these entities that are outside the
context of the system. Entities either provide data to the
system (referred to as a source) or receive data from it
(referred to as a sink). Entities are often represented as
rectangles (a diagonal line across the right-hand corner
means that this entity is represented somewhere else in

the DFD). Entities are also referred to as agents,
terminators, or source/sink.

Process
The process is the manipulation or work that transforms
data, performing computations, making decisions (logic
flow), or directing data flows based on business rules. In
other words, a process receives input and generates
some output. Process names (simple verbs and dataflow
names, such as “Submit Payment” or “Get Invoice”)
usually describe the transformation, which can be
performed by people or machines. Processes can be
drawn as circles or a segmented rectangle on a DFD, and
include a process name and process number.

Data Store
A data store is where a process stores data between
processes for later retrieval by that same process or
another one. Files and tables are considered data stores.
Data store names (plural) are simple but meaningful,
such as “customers,” “orders,” and “products.” Data
stores are usually drawn as a rectangle with the right-
hand side missing and labeled by the name of the data
storage area it represents, though different notations do
exist.

Data Flow
Data flow is the movement of data between the entity,
the process, and the data store. Data flow portrays the
interface between the components of the DFD. The flow
of data in a DFD is named to reflect the nature of the
data used (these names should also be unique within a
specific DFD). Data flow is represented by an arrow,
where the arrow is annotated with the data name.

These DFD components are illustrated in Figure 4.

 Figure 4. The Four Major DFD Components.

customer account
CustAcc

D2 Check Register

D1 Bill payable

Bank
Deposit

Check
details

Bill
details

Paycheck

Deposit
amount

A1

Prepare
bank

deposit A2

Update
check
book

A3

Pay
bills

balance

date

street

SSN

Entity Faculty

Data Flow
New Student

Record

ID 2.1

Process
(could be
drawn as
a circle)

Create
Student
Record

ID Data Store B2 Student Record

customer
city

account no.

Process for Developing DFDs

Data flow diagrams can be expressed as a series of
levels. We begin by making a list of business activities to
determine the DFD elements (external entities, data
flows, processes, and data stores). Next, a context
diagram is constructed that shows only a single process
(representing the entire system), and associated external
entities. The Diagram-0, or Level 0 diagram, is next,
which reveals general processes and data stores (see
Figures 5 and 6). Following the drawing of Level 0
diagrams, child diagrams will be drawn (Level 1
diagrams) for each process illustrated by Level 0
diagrams.

Figure 5. General Form of a Level 0 DFD.

Figure 6 offers a more specific Level 0 DFD.

GUIDELINES FOR PRODUCING
DFDS

Why They Aren’t Called “Rules”

The most important thing to remember is that there are
no hard and fast rules when it comes to producing DFDs,
but there are when it comes to valid data flows. For the
most accurate DFDs, you need to become intimate with
the details of the use case study and functional
specification. This isn’t a cakewalk necessarily, because
not all of the information you need may be present. Keep
in mind that if your DFD looks like a Picasso, it could be
an accurate representation of your current physical
system. DFDs don’t have to be art; they just have to
accurately represent the actual physical system for data
flow.

Preliminary Investigation of Text Information
The first step is to determine the data items, which are
usually located in documents (but not always). Once you
identify the data items, you’ll need to determine where
they come from (source) and where they go
(destination). Construct a table to organize your
information, as shown in Table 1.

Data Item Source Destination

Needs Analysis Account Executive Project Manager

ROI Study Pre-Sales Support Proposal Manager

Table 1. Data Item Table

Determining System Boundaries
Once you have the data items, sources, and destinations
in a table, determine which entities (sources and
destinations) belong internal to the system and which
ones are external to the system. Sometimes it helps to
have some knowledge about what may be happening at
deeper levels (Level 1+) to work backwards to help you
develop a Level 0 DFD. Such a method depends on the
system being modeled or personal preference, but
knowing that DFD development is an iterative process
prepares you for the many DFD drafts you may have to
generate.

Developing the Level 0 DFD
At this point, you should have a good idea of the system
boundary. All components within the system boundary
are included within a single system/process box in the
DFD. External entities lie outside the system boundary;
internal entities will become locations for processes. The
data flow arrows to and from the external entities will
indicate the system’s relationship with its environment.
Remember that information always flows to or from a
process, an external entity, or a data store. You can use a
dashed line to show data flows between external entities

Figure 6. Specific Level 0 DFD

External
Entity

External
Entity

External
Entity

External
Entity

Computer-
Based
System

External
Entity

This process
bubble could
be drawn as
a rectangle
with round
corners…

MIDI Sound
Commands

Digital
Mixer

External
MIDI

Device

Monitor
Display

Studio
Speakers

MIDI
Amplifier

Mixer Sound
Data Link

Music
Output

Status
Display

DR5 Settings

MIDI
Sound
Data

Music
Output

Mixer
Sound
Commands
Link

DR5
Band in
a Box

that are strictly external to the system at hand if it will
help make the DFD easier to understand.

Child (Level 1+) Diagrams

DFDs can be expressed as a series of levels. The
outermost level (Level 0) is concerned with how the
system interacts with the outside world. Subsequent
levels examine the system in more detail, and use the
same symbols and syntax as with Level 0. See Figure 7.

Figure 7. Example of a Level 1 DFD Showing
the Data Flow and Data Store Associated With a
SubProcess “Digital Sound Wizard.”

When producing a first-level DFD, the relationship of
the system with its environment must be preserved. In
other words, the data flow in and out of the system in the
Level 1 DFD must be exactly the same as those data
flows in Level 0. If you discover new data flows crossing
the system boundary when drawing the Level 1 DFD,
then the Level 0 DFD must be amended to reflect the
changes in the Level 1 DFD.

Developing the Level 1 DFD
It is important that the system relationship with its
environment be preserved no matter how many levels
deep you model. In other words, you can’t have new
data flows crossing the system boundary in Level 1. The
next section deals with such non-valid data flows.

The Level 1 DFD provides a high-level view of the
system that identifies the major processes and data
stores. Identify or list each incoming and outgoing data
flow with a corresponding process that receives or
generates data. Make sure you refer to your data item
table for any missing internal data flows and to identify
data stores. If your table contains documents with the
same source and destination, they might be data stores.
Some processes share data stores while some data stores
are used by one process. It may be possible to move the
single process • data store inside the process itself.
Identify those processes that only address internal

outputs and outputs, and use one process for each source
or destination from the DFD.

Revising the Level 1 DFD
Once you’ve finished your first attempt at a Level 1
DFD, review it for consistency and refine it for balance
by asking yourself these questions:
1. Do the Level 1 processes correspond with the major

functions that a user expects from the system?
2. Is the level of detail balanced across the DFD?
3. Can some processes be merged?
4. Can I remove data stores not shared by more than

one process?
5. Have I avoided crossed data flow lines by making

use of duplicated components (external entities and
data stores)?

Some Guidelines About Valid and Non-
Valid Data Flows

Before embarking on developing your own data flow
diagram, there are some general guidelines you should
be aware of.

Data stores are storage areas and are static or passive;
therefore, having data flow directly from one data store
to another doesn't make sense because neither could
initiate the communication.

Data stores maintain data in an internal format, while
entities represent people or systems external to them.
Because data from entities may not be syntactically
correct or consistent, it is not a good idea to have a data
flow directly between a data store and an entity,
regardless of direction.

Data flow between entities would be difficult because it
would be impossible for the system to know about any
communication between them. The only type of
communication that can be modeled is that which the
system is expected to know or react to.

Processes on DFDs have no memory, so it would not
make sense to show data flows between two
asynchronous processes (between two processes that
may or may not be active simultaneously) because they
may respond to different external events.

Therefore, data flow should only occur in the following
scenarios:
• Between a process and an entity (in either direction)
• Between a process and a data store (in either

direction)
• Between two processes that can only run

simultaneously

Figure 8 illustrates these valid data-flow scenarios.

Digital
Sound
Wizard

1

Sound
Waveform

1

Playback
Data

Record
DataMIDI Sound

Commands

MIDI Sound
Commands

Instrument
Sound

Mixer Sound
Data Link

MIDI Sound
Data

Music Output

Figure 8. A Valid DFD Example Illustrating Data
Flows, Data Store, Processes, and Entities.

In Figure 8, Student and Faculty are the source and
destination of information (the entities), respectively.
Register 1, Exam 2, and Graduate 3 are the processes in
the program. Student Record is the data store. Register 1
performs some task on Registration Form from Student,
and the Subject Registered moves to the data store. The
Class Rolls information flows on to Faculty. Graduate 3
obtains Academic Record information from Student
Record, and Degree/Transcript information is moved to
Student. Exam 2 obtains exam/paper information from
Faculty, and moves the Grades to the Student Record for
storage.

Here are a few other guidelines on developing DFDs:
• Data that travel together should be in the same data

flow
• Data should be sent only to the processes that need

the data
• A data store within a DFD usually needs to have an

input data flow
• Watch for Black Holes: a process with only input

data flows
• Watch for Miracles: a process with only output

flows
• Watch for Gray Holes: insufficient inputs to

produce the needed output
• A process with a single input or output may or may

not be partitioned enough
• Never label a process with an IF-THEN statement
• Never show time dependency directly on a DFD (a

process begins to perform tasks as soon as it
receives the necessary input data flows)

ANALYSIS AND DESIGN
METHODS

Analysis and design methods are tools used during the
project life cycle for bringing order and structure to the
analysis and design process. They specify the steps,
notation, rules, and guidelines for conducting object-
oriented analysis and design (OOAD). We will briefly
focus on object-oriented analysis (OOA).

Steps in Object-Oriented Analysis

The first step in OOA is often the identification of
important classes, which is done by identifying the
nouns in the requirement specification. Many times,
classes are defined from tangible things, roles, or
incidents.

Analysis also includes defining object attributes and
object and class or other relationships. Analysis also
attempts to identify the behavior of objects and classes
as well as data flow between objects.

Object Modeling Technique (OMT)

The Object Modeling Technique (OMT) is an approach
to object-oriented analysis and design that is also
referred to as the Rumbaugh Method, named after the
principal author of the technique. The OMT
methodology is programming language-independent,
instead relying on a consistent, single notation for both
analysis and design.

OMT Modeling
The output of OMT is a three-dimensional view (from three
different models) of the system that stays the same during
the transition from analysis to design.

The Object Model describes the static system components
and is modeled using object diagrams. The Dynamic Model
describes the dynamic system components that change over
time and are modeled using state diagrams. The Functional
Model describes operations performed on data in a system
and uses data flow diagrams.

Advantages and Disadvantages of
DFDs

Strengths
As we have seen, the DFD method is an element of object-
oriented analysis and is widely used. Use of DFDs
promotes quick and relatively easy project code
development. DFDs are easy to learn with their few-and-
simple-to-understand symbols (once you decide on a
particular DFD model). The syntax used for designing

Grades

Student

Faculty

Student Record

Registration form

Exam or
Paper

Subject
Registered

Degree/
Transcripts

Class
Rolls

Academic
Record

Exam
2

Graduate
3

Register
1

DFDs is simple, employing English nouns or noun-
adjective-verb constructs.

Disadvantages
DFDs for large systems can become cumbersome,
difficult to translate and read, and be time consuming in
their construction. Data flow can become confusing to
programmers, but DFDs are useless without the
prerequisite detail: a Catch-22 situation. Different DFD
models employ different symbols (circles and rectangles,
for example, for entities).

Using DFDs in the Appropriate
Application Domain

DFDs are useful tools for OO architectures and are best
utilized with OO languages and compiler programming.
DFD semantics can be accurately and precisely
represented within OO technology, as Figure 9
illustrates. The methods of the Customer Object and
Vendor Object are of the same syntactical construct as
DFDs.

Figure 9. Example of DFD Semantics Used in
Object Technology 2

Because of the semantic relationship DFDs have with
OO programming, DFDs are inappropriate for non-OO
architectures. The first and most important step in
translating a functional spec into a DFD is to parse it
into its component verbs and nouns so that a DFD can be
developed that precisely coincides with the functional
specification.

CONCLUSION

Data flow diagramming is a highly effective technique
for showing the flow of information through a system.
DFDs are used in the preliminary stages of systems
analysis to help understand the current system and to
represent a required system. The DFDs themselves
represent external entities sending and receiving
information (entities), the processes that change
information (processes), the information flows
themselves (data flows), and where information is stored

(data stores). The hierarchical DFDs consist of a single
top layer (Level 0 or the context diagram) that can be
decomposed into many lower level diagrams (Level 1,
Level 2…Level N), each representing different areas of
the system.

DFDs are extremely useful in systems analysis as they
help structure the steps in object-oriented design and
analysis. Because DFDs and object technology share the
same syntax constructs, DFDs are appropriate for the
OO domain only.

DFDs are a form of information development, and as
such provide key insight into how information is
transformed as it passes through a system. Having the
skills to develop DFDs from functional specs and being
able to interpret them is a value-add skill set that is well
within the domain of technical communications.

REFERENCES

(1) Perry, Greg. Sams Teach Yourself Beginning
Programming in 24 Hours, Sams Publishing, 1998.
492 pages.

(2) Le Vie, Jr., Donald. “An eCommerce Primer for
Technical Communicators,” STC Proceedings of
the 47th Annual Conference, 2000.

Donald (Donn) S. Le Vie, Jr.
Information Development Director
Integrated Concepts, Inc.
8834 Capital of Texas Highway North, Suite 280
Austin, Texas 78759
(512) 231-9999, ext. 231
dlevie@integratedconcepts.com

Donn directs the information development efforts at
Integrated Concepts, Inc., an eCommerce software
development company in Austin, Texas. He has more
than 20 years’ experience in private industry, academia,
and government. When he’s not writing articles and
books, Donn records and tours with his band, SnakeByte.

CalculateCost
DisplayCost

FormatInvoice

CalculateCost
DisplayCost

FormatInvoice

Object X Interface Object Z Interface

Customer Object Vendor Object

