
MySQL

Quick aside about uploading files
Don’t believe everything you read on the internet…
https://www.w3schools.com/php/php_file_upload.asp
Vs.

https://secure.php.net/manual/en/function.getimagesize.php

Which should you trust?? J

https://www.w3schools.com/php/php_file_upload.asp
https://secure.php.net/manual/en/function.getimagesize.php

Learning Objectives
Learn and review the basics of database access
Learn how to set up and administer MySQL
Learn how to connect to a database

Adding Database Access
html, JavaScript, PHP let us build user-friendly interfaces for
databases
adding a database can make sites more functional and dynamic
◦ have up to date inventory, user accounts, shopping carts etc.
◦ dynamically create web pages based on latest data
◦ save information for later

Database Driven Sites
Many sites are database driven
◦ Ebay, Amazon, Facebook
◦ Small mom and pop store fronts
◦ Photo sharing sites

Steps to connect a website to a db
Set up database
Write programs based on business logic to:
◦ retrieve
◦ store
◦ remove
◦ update

Create web pages that collect and display db information

Database
Database is a specialized collection of data
Relational database uses tables or relations to organize the data
Relational database management system (RDBMS)
◦ software that allows access to database

Examples of RDBMS:
◦ DB2, Oracle, MySQL, SQLite, Microsoft Access

Relational Databases
Consists of multiple tables of data (also called relations)
Each table is a set of related attributes and possible values
Schema defines the table:
◦ column headings are the attributes
◦ each value has an associated type

Last First Dept. Email

Carruthers Sarah CS carruths@csci.viu.ca

...

Relational Databases
Data can be different types
Each row is called a record or tuple
All records in a table is called table/relation instance
A database consists of multiple tables
Relationships between elements in the tables is important
Typically login is required to access data in database
if localhost is granted access, then programs running on same host
computer can access the database

SQL: Structured Query Language
SQL is a standardized language to create, access and manipulate:
◦ databases
◦ tables
◦ records
◦ other database-related items

Declarative language
Consists of:
◦ Data Definition Language (DDL)
◦ Data Manipulation Language (DML)

SQL
All major RDBMS are SQL compliant (to a degree)
◦ Makes it easier to work with different databases

However, there are differences between different databases
We will be working with MySQL

Database Queries
Command written in SQL
Retrieval query usually results in a resultset
◦ a table of records

An update query does not return a resultset

Database Queries
Suppose we have member table
SELECT * FROM member WHERE last=‘carruthers’;
◦ retrieves all columns for all rows where last is carruthers
◦ resultset is a table of all matches (or a subset of tuples in member satisfying the

condition in the WHERE clause)

uid last first email password

jsmith Smith Joe

scarruthers Carruthers Sarah

jjones Jones Joel

Database Queries
Suppose we have member table
SELECT * FROM member WHERE last=‘Carruthers’;
◦ retrieves all columns for all rows where last is Carruthers
◦ resultset is a table of all matches (or a subset of tuples in member satisfying the

condition in the WHERE clause)

uid last first email password

jsmith Smith Joe

scarruthers Carruthers Sarah

jjones Jones Joel

Database Queries
keywords in SQL are case insensitive
◦ but all caps is commonly used for clarity

all queries are terminated in ;
* symbol, or wildcard, means all columns in this query
comments
◦ start in # to end of line
◦ start in --SPACE to end of line
◦ within /* and */ (like C++)

Database Queries
Can also specify which columns to return:
◦ SELECT last, first, email FROM member; -- three columns
◦ SELECT password FROM member where uid=“scarruthers”; # password for sarah

uid last first email password

jsmith Smith Joe

scarruthers Carruthers Sarah

jjones Jones Joel

Database Queries
To avoid duplicate rows, use DISTINCT
◦ SELECT DISTINCT zip FROM employee;
◦ SELECT DISTINCT city, state, country FROM participant;
◦ SELECT DISTINCT major, year FROM student WHERE year=“Freshman”;

Database Queries
Can order the resultset using the ORDER BY clause
◦ SELECT * FROM client ORDER BY last_name;
◦ SELECT id, grade FROM student_grade WHERE
course_id=“CSCI311” AND semester=“Spring” AND
year=“2017” ORDER BY grade;

Normally ordering is low to high (ascending)
◦ use DESC keyword to indicate descending
◦ SELECT customer_name, amt FROM sale ORDER BY amt
DESC;

MySQL Data types
MySQL has many different data types:
◦ String Types
◦ Integer Types
◦ Floating Point Types
◦ Fixed Point Types
◦ Bit Value Types
◦ Numeric type Attributes
◦ Date and time Types
◦ Blob and Text Types
◦ Enum Types
◦ Set Types

String types
Type Description

CHAR non-binary strings
Fixed length
right-padded to specified length
up to 255 characters

VARCHAR non-binary strings
variable-length strings
up to 255 characters

TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT

string with up to 255 characters
string with up to 65535 characters
string with up to 16777215 characters
string with up to 4,294,967,295 characters

Integer Types
Type Length (bytes) Minimum Value

signed
unsigned

Maximum Value
signed

unsigned
TINYINT 1 -128

0
127
255

SMALLINT 2 -32768
0

32767
65535

MEDIUMINT 3 -8388698
0

8388607
16777215

INT 4 -2147483648
0

2147483647
4294967295

BIGINT 8 -9223372036854775808
0

9223372036854775807
18446744073709551615

Floating and fixed point types
Type Description

FLOAT 4-byte single precision floating point number
precision from 0 to 23

DOUBLE 8-byte double precision floating point number
precision from 24 to 53

DECIMAL
NUMERIC

A fixed point number
Maximum number of digits: 65 (pre MySQL 5.03) or 64 (post MySQL 5.04)
stored as a string

Examples
CREATE TABLE course(

name VARCHAR(40),

courseID VARCHAR(8),

level INT(1));

INSERT INTO course(name, courseID, level)
VALUES ('Data Structures', 'CSCI260', 2),
('System and Networks', 'CSCI251', 2);

Examples
CREATE TABLE course(

name VARCHAR(40),

courseID VARCHAR(8),

level INT(1));

INSERT INTO course(name, courseID, level)
VALUES ('Data Structures', 'CSCI260', 2),
('System and Networks', 'CSCI251', 2);

name courseID level

”Data Structures” “CSCI260” 2

“System and Networks” “CSCI251” 2

Date and time types
Type Description Display Format Range

DATETIME A date and time combo YYYY-MM-DD HH:MI:SS 1000-01-01 00:00:00 to
9999-12-31 23:59:59

DATE Date only YYYY-MM-DD 1000-01-01 to
9999-12-31

TIMESTAMP timestamp value stored
as the number of
seconds since 1970 UTC

YYYY-MM-DD HH:MI:SS 1970-01-01 00:00:00 UTC
to
2038-01-09 03:14:07 UTC

TIME Time only HH:MI:SS -838:59:59 to
838:59:59

YEAR Year only in 2 or 4 digit
format

YYYY or YY 1901 to 2155 (4 digit)
70 to 69 (1970 to 2069)

Blob Types
Type Description

BLOB Binary Large Object
Can contain variable amount of data
Treated as binary strings
up to 65535 bytes of data

MEDIUMBLOB up to 16777215 of data

LONGBLOB up to 4294967295 of data

And the rest...
Type Description

ENUM string object with a list of possible values
up to 65535 values
Cannot add values that are not in list
sorted in the order they are entered

SET String object with up to 64 comma separated values

Some Examples
CREATE TABLE shirts (

name VARCHAR(40),

size ENUM('x-small', 'small', 'medium', 'large', 'x-large'));

INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-
shirt','medium'), ('polo shirt','small');

SELECT name, size FROM shirts WHERE size = 'medium';

+---------+--------+

| name | size |

+---------+--------+

| t-shirt | medium |

+---------+--------+

MySQL Expressions
in the WHERE clause the expression after the WHERE keyword is
evaluated
◦ if true or 1 the clause is satisfied
◦ if false or 0 the clause is not satisfied

Can include relational operators:
◦ = equal
◦ <>, != not equal
◦ >, < greater than, less than
◦ >=, <= greater than or equal, less than or equal

MySQL TRUE, FALSE, OTHER...
MySQL relational operators evaluate to TRUE, FALSE or NULL
0, ‘’, and NULL treated as logical false
everything else is true

To test for null, use IS NULL or IS NOT NULL
<=> operator: null-safe returns 1 if both operands are NULL,
otherwise works like = operator

MySQL logical operators
MySQL has the following logical
operators:
◦ AND
◦ OR
◦ NOT
◦ XOR

• 0 AND NULL is 0
• 1 AND NULL is NULL
• 0 OR NULL is NULL
• 1 OR NULL is 1
• 1 XOR NULL is NULL
• 0 XOR NULL is NULL
• NOT NULL is NULL

Mathematical Operators
MySQL has typical:
◦ + * - /
◦ / usually return a floating point value,
◦ DIV operator does integer division
◦ divide by 0 returns NULL

◦ = operator overloaded to also be assignment when in the SET environment

MySQL SELECT Queries
We can perform pattern matching in WHERE clause
◦ LIKE
◦ NOT LIKE
◦ % matches any string with 0 or more characters
◦ _ matches every single character
◦ \ is escape character

Examples:
◦ SELECT email FROM member WHERE zip LIKE “44%”

◦ returns email of records where zip code matches all zip codes that start with 44
◦ SELECT * FROM student WHERE phone NOT LIKE ‘333-%’

◦ returns all records where phone doesn’t start with 333-

MySQL pattern matching
string comparisons in MySQL are usually case insensitive
some operands use case-sensitive collating sequences
To force case-sensitive comparison:
◦ SELECT “ABC” < “abc” COLLATE utf8_bin; -- returns 1
◦ SELECT filename LIKE ‘%.html’ COLLATE utf8_bin;

◦ /* returns all filenames that end in .html */

Can also use regular expressions
◦ filename RLIKE ‘/.html*’ -- foo.html or bar.htm
◦ filename RLIKE ‘/.jpg$|/.JPG$’ -- foo.jpg or bar.JPG

Producing new columns
A SELECT can make new columns using the AS clause:
◦ SELECT name, vacation_taken, vacation_accrued,
(vacation_accrued-vacation_taken) AS
vacation_balance FROM employee;

◦ SELECT CONCAT(last,’, ‘, first) AS fullname FROM
member ORDER BY fullname;

For more functions:
https://dev.mysql.com/doc/refman/5.7/en/functions.html

https://dev.mysql.com/doc/refman/5.7/en/functions.html

Aggregating Attribute Values
It can be useful to calculate or aggregate data rather than just returning
another table of data
MySQL built-in aggregating functions:
◦ COUNT(expr) returns count of non-null values of expr. count(*) returns number of

rows in resultset
◦ AVG(expr) returns average of expr values
◦ MAX(expr) returns max of expr values
◦ MIN(expr) returns min of expr values
◦ SUM(expr) returns sum of expr values
◦ GROUP_CONCAT(expr) returns the comma-separated string concatenation of expr

values

Aggregating examples
SELECT COUNT(*) AS enrollment FROM student;
◦ resultset: single record with enrollment with a value of 4

SELECT COUNT(letter_grade) FROM grade WHERE
letter_grade=‘A’;
◦ resultset: number of A’s

SELECT COUNT(DISTINCT major) FROM student
◦ how many different majors

SELECT AVG(hw2) as hw2_avg, MAX(hw2) as hw2_max,
MIN(hw2) as hw2_min FROM grade;

Aggregating examples
SELECT dept_name, COUNT(*) AS enrollment FROM
student GROUP BY dept_name ORDER BY enrollment
DESC
◦ aggregates over a group of rows in a table
◦ resultset is a table with 2 columns: dept_name and enrollment
◦ Each row will have a department, and the number of students enrolled

Data Relationships
SQL databases get their power from relationships between data
Instead of large complicated tables, we separate common concepts into
different tables
Relationships can be:
◦ 1-1
◦ many-1
◦ many-many
◦ ...

Tables are related using keys
◦ Primary Keys
◦ Foreign Keys

Normalization
To eliminate duplicated information we normalize our data
There are different levels of normalization:
◦ First Normal Form (1NF)
◦ ...
◦ Fifth Normal Form (5NF)

Zero Normal Form
This is just a table of data
Each record (row) is self-contained
◦ doesn’t need to reference anything else

First Normal Form
Create separate tables for related information
Eliminate duplicated columns
Create primary keys for each table

Going to First Normal Form
Band name
Album title
Song titles
Song length
Producer Name
Release Year
Artist hometown
Concert Venue
Concert Date
Artist Names

Going to First Normal Form
Band name
Album title
Song titles
Song length
Producer Name
Release Year
Artist hometown
Concert Venue
Concert Date
Artist Names

Bands
Band Name

Going to First Normal Form
Band name
Album title
Song titles
Song length
Producer Name
Release Year
Artist hometown
Concert Venue
Concert Date
Artist Names

Bands
Band Name

Albums
Album Name (ref Band)

Going to First Normal Form
Band name
Album title
Song titles
Song length
Producer Name
Release Year
Artist hometown
Concert Venue
Concert Date
Artist Names

Bands
Band Name

Albums
Album Name
(ref Band)

Songs
Song Title
Song Length
(ref Album)

Going to First Normal Form
Band name
Album title
Song titles
Song length
Producer Name
Release Year
Artist hometown
Concert Venue
Concert Date
Artist Names

Bands
BandID
Band Name

Albums
AlbumID
Album Name
Release Year
(ref Band)

Songs
SongID
Song Title
Song Length
(ref Album)

Labels
ProducerID
Producer Name

Artists
ArtistID
Artist Name
Hometown

Concerts
VenueID
Venue
Date

Second Normal Form
Is in First Normal Form
Move repeated data to reference table
Connect reference tables using foreign keys

Going to Second Normal Form

Bands
BandID
Band Name

Albums
AlbumID
Album Name
Release Year
(ref Band)

Songs
SongID
Song Title
Song Length
(ref Album)

Labels
ProducerID
Producer Name

Artists
ArtistID
Artist Name
Hometown

Concerts
VenueID
Venue
Date

Going to Second Normal Form
Bands
BandID
Band Name

Albums
AlbumID
Album Name
Release Year
BandID
ProducerID

Songs
SongID
Song Title
Song Length
AlbumID

Labels
ProducerID
Producer Name

Artists
ArtistID
Artist Name
Hometown

Concerts
VenueID
Venue
Date

Bands2Labels
id
producerID
bandID
timestamp

MySQL CRUD Actions
We can break down everything we do into:
◦ Create
◦ Read
◦ Update
◦ Delete

Opening MySQL
From a Browser (using PHPMyAdmin)
◦ typically found at: localhost/phpmyadmin (and BAD SECURITY-wise!)

From the command line
◦ mysql -h wwwstu.csci.viu.ca -p (for CSCI install)
◦ see what’s there:

◦ show databases;
◦ creating databases:

◦ create database NAME;
◦ drop a database:

◦ drop database NAME;
◦ use a database:

◦ use music;

Some Examples
Open MySQL
View databases: show databases;
+--------------------+
| Database |
+--------------------+
| carruths |

| information_schema |
+--------------------+
2 rows in set (0.00 sec)

Some Examples
Select database: use databasename;

show tables: show tables;
+---------------------+
| Tables_in_carruths |
+---------------------+
| Furniture |
| albums |
| bands |
| directors |
| testtable |
| tv_series |
| tv_series_directors |
+---------------------+
7 rows in set (0.00 sec)

Some Examples
View contents of a table: SELECT * FROM Furniture;
+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

| prod_number | name | date_added | category | type | description | price | pix |

+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

| 1 | Fluffy Chair | 2017-01-30 | Living Room | Chair | very fluffy chair | 43.75 | fluffy.jpg |

| 2 | Hard Chair | 2017-01-30 | Dining Room | Chair | very hard chair | 13.75 | hardchair.jpg |

| 3 | Hipsteryer Table | 2017-01-30 | Dining Room | Table | artisan table | 743.75 | hipster.jpg |

| 4 | Hipster Table | 2017-01-30 | Dining Room | Table | artisan table | 743.75 | hipster.jpg |

+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

Some Examples
Insert data into table: INSERT INTO Furniture (name,
date_added, category, type, description, price)
VALUES ("Table Lamp", NOW(), "Living Room", "Lamp",
"A classy lamp", 149.99);
+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

| prod_number | name | date_added | category | type | description | price | pix |

+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

| 1 | Fluffy Chair | 2017-01-30 | Living Room | Chair | very fluffy chair | 43.75 | fluffy.jpg |

| 2 | Hard Chair | 2017-01-30 | Dining Room | Chair | very hard chair | 13.75 | hardchair.jpg |

| 4 | Hipster Table | 2017-01-30 | Dining Room | Table | artisan table | 743.75 | hipster.jpg |

| 11 | Table Lamp | 2018-03-07 | Living Room | Lamp | A classy lamp | 149.99 | missing.jpg |

+-------------+-------------------+------------+-------------+-------+-------------------+---------+---------------+

Create
Once we’ve created a database, we need to add tables to it
the music database already contains the band and albums tables
if they weren’t there we could create them:

CREATE TABLE bands (bandID int not null auto_increment primary
key, bandName varchar(40) not null);

commas separate the column definitions
bandID:
◦ is an int, cannot be empty, created automagically, and is the primary key

bandName:
◦ a var char of length 40, and not empty

Create
We can also insert data into our tables
◦ using the INSERT query

INSERT INTO bands (bandName) values (“Michael
Jackson”), (“Prince”);

And we can see what is in the table:
SELECT * FROM bands;

Read
Once we have data in our database we can use Select statements to
read the data:
◦ Can get one or more records
◦ Can get one or more columns of these records
◦ We can make new columns

Read
Get all data:

Select * from bands

+--------+--------------+

| bandID | bandName |

+--------+--------------+

| 1 | The Who |

| 2 | Moxy Fruvous |

| 3 | The Doors |

| 4 | Maroon 5 |

+--------+--------------+

4 rows in set (0.00 sec)

Read
Get specific columns:

Select albumName, releaseDate from bands

+--------------+-------------+

| albumName | releaseDate |

+--------------+-------------+

| Tommy | 1969-05-23 |

| Bargainville | 1993-07-20 |

| Full Circle | 1972-07-17 |

+--------------+-------------+

3 rows in set (0.00 sec)

Read
We can rename the columns:

select albumName as "Album", releaseDate as "Release Date" from albums;

+--------------+--------------+

| Album | Release Date |

+--------------+--------------+

| Tommy | 1969-05-23 |

| Bargainville | 1993-07-20 |

| Full Circle | 1972-07-17 |

+--------------+--------------+

3 rows in set (0.00 sec)

Read
We can retrieve only specific records:
select albumName as "Albums", bandID as "Band"
from albums where albumName like '%bargain%';
+--------------+------+
| Albums | Band |
+--------------+------+
| Bargainville | 2 |
+--------------+------+
1 row in set (0.00 sec)

Read
We can sort as well:

select albumName as "Albums", releaseDate as "Release Date" from albums
order by albumName;

+--------------+--------------+

| Albums | Release Date |

+--------------+--------------+

| Bargainville | 1993-07-20 |

| Full Circle | 1972-07-17 |

| Tommy | 1969-05-23 |

+--------------+--------------+

3 rows in set (0.00 sec)

Read
We can aggregate data (say, count the number of albums per bandID

select bandID, count(*) as "Albums" from albums group by bandID;

+--------+--------+

| bandID | Albums |

+--------+--------+

| 1 | 1 |

| 2 | 1 |

| 3 | 1 |

| 5 | 2 |

+--------+--------+

4 rows in set (0.00 sec)

Read
We can use logic in the where clause to limit the return results
select * from albums where albumName like "%full%" or albumName like
"%to%";

+---------+---------------------+-------------+--------+------------+

| albumID | albumName | releaseDate | bandID | producerID |

+---------+---------------------+-------------+--------+------------+

| 1 | Tommy | 1969-05-23 | 1 | NULL |

| 3 | Full Circle | 1972-07-17 | 3 | NULL |

| 4 | Under the Mistletoe | 2010-11-01 | 5 | NULL |

+---------+---------------------+-------------+--------+------------+

3 rows in set (0.00 sec)

Read
Or limit the number of rows we care about
select * from albums where albumName like "%full%" or albumName
like "%to%" limit 2;

+---------+-------------+-------------+--------+------------+

| albumID | albumName | releaseDate | bandID | producerID |

+---------+-------------+-------------+--------+------------+

| 1 | Tommy | 1969-05-23 | 1 | NULL |

| 3 | Full Circle | 1972-07-17 | 3 | NULL |

+---------+-------------+-------------+--------+------------+

2 rows in set (0.00 sec)

Update
We can also update data in our database
create table labels (producerID int not null auto_increment primary key, producer

varchar(40) not null);

Query OK, 0 rows affected (0.02 sec)

mysql> show tables;
+-----------------+

| Tables_in_music |

+-----------------+

| albums |

| bands |

| labels |

+-----------------+
3 rows in set (0.00 sec)

Update
Now let’s add a couple of producers:
insert into labels (producer) values ("Stewart"), ("Messinger"), ("Moxy Fruvous");
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> select * from labels;
+------------+--------------+
| producerID | producer |
+------------+--------------+
1	Stewart
2	Messinger
3	Moxy Fruvous
+------------+--------------+
3 rows in set (0.00 sec)

Update
Now we’re ready to link...
update albums set producerID=1 where albumName="Under the Mistletoe";
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> select * from albums;
+---------+---------------------+-------------+--------+------------+
| albumID | albumName | releaseDate | bandID | producerID |
+---------+---------------------+-------------+--------+------------+
1	Tommy	1969-05-23	1	NULL
2	Bargainville	1993-07-20	2	NULL
3	Full Circle	1972-07-17	3	NULL
4	Under the Mistletoe	2010-11-01	5	1
5	Believe	2012-06-15	5	NULL
+---------+---------------------+-------------+--------+------------+
5 rows in set (0.00 sec)

Update
Now we’re ready to link...
select * from albums;
+---------+---------------------+-------------+--------+------------+
| albumID | albumName | releaseDate | bandID | producerID |
+---------+---------------------+-------------+--------+------------+
1	Tommy	1969-05-23	1	NULL
2	Bargainville	1993-07-20	2	3
3	Full Circle	1972-07-17	3	NULL
4	Under the Mistletoe	2010-11-01	5	1
5	Believe	2012-06-15	5	2
+---------+---------------------+-------------+--------+------------+
5 rows in set (0.00 sec)

Delete
Finally, we may need to remove records from the database’s tables

delete from albums where albumName like “%like%”;

More advanced queries
There are other more advanced ways to retrieve data from our
database:
◦ joins
◦ nested queries

Joins
Different ways to join tables:
◦ Inner join:

◦ return records from 2 tables when a value is found in both

◦ Left/right join:
◦ return records from 2 tables when a value is NOT found in both

Inner Join
lets get all records (from both the bands and albums tables) that have an album
◦ that is, there is an entry in the album table that matches the id of a band

select * from bands, albums where albums.bandID=bands.bandID;
+--------+---------------+---------+---------------------+-------------+--------+------------+
| bandID | bandName | albumID | albumName | releaseDate | bandID | producerID |
+--------+---------------+---------+---------------------+-------------+--------+------------+
1	The Who	1	Tommy	1969-05-23	1	NULL
2	Moxy Fruvous	2	Bargainville	1993-07-20	2	3
3	The Doors	3	Full Circle	1972-07-17	3	NULL
5	Justin Bieber	4	Under the Mistletoe	2010-11-01	5	1
5	Justin Bieber	5	Believe	2012-06-15	5	2
+--------+---------------+---------+---------------------+-------------+--------+------------+
5 rows in set (0.00 sec)

Inner Join
We can make the output nicer:
select bands.bandName as "Bands", albums.albumName as "Album", releaseDate as
"Released" from bands, albums where albums.bandID=bands.bandID;
+---------------+---------------------+------------+
| Bands | Album | Released |
+---------------+---------------------+------------+
The Who	Tommy	1969-05-23
Moxy Fruvous	Bargainville	1993-07-20
The Doors	Full Circle	1972-07-17
Justin Bieber	Under the Mistletoe	2010-11-01
Justin Bieber	Believe	2012-06-15
+---------------+---------------------+------------+
5 rows in set (0.00 sec)

Left/right joins
So far we haven’t seen Maroon 5 in these results, because they don’t
have an album
We can use left/right joins to get rows like this
◦ Left join: all records from left table, plus values from right if they exist
◦ Right join: all records from right table, plus values from left if they exist

Left/right joins
Lets get all albums with their producer with left join
select albums.albumName as "Albums", labels.producer as "Producer" from
albums left join labels on albums.producerID=labels.producerID;
+---------------------+--------------+
| Albums | Producer |
+---------------------+--------------+
Under the Mistletoe	Stewart
Believe	Messinger
Bargainville	Moxy Fruvous
Tommy	NULL
Full Circle	NULL
+---------------------+--------------+
5 rows in set (0.00 sec)

Left/right joins
Do the same as a right join
select albums.albumName as "Albums", labels.producer as "Producer"
from albums right join labels on
albums.producerID=labels.producerID;
+---------------------+--------------+
| Albums | Producer |
+---------------------+--------------+
Bargainville	Moxy Fruvous
Under the Mistletoe	Stewart
Believe	Messinger
+---------------------+--------------+
3 rows in set (0.00 sec)

joins
select bandName, albumName, releaseDate, producer from bands, albums,

labels where albums.bandID=bands.bandID and
albums.producerID=labels.producerID;
+---------------+---------------------+-------------+--------------+

| bandName | albumName | releaseDate | producer |
+---------------+---------------------+-------------+--------------+
| Moxy Fruvous | Bargainville | 1993-07-20 | Moxy Fruvous |

| Justin Bieber | Under the Mistletoe | 2010-11-01 | Stewart |
| Justin Bieber | Believe | 2012-06-15 | Messinger |
+---------------+---------------------+-------------+--------------+

3 rows in set (0.00 sec)

joins
select bandName, albumName, releaseDate, title, length, producer from bands,
albums, songs, labels where songs.albumID=albums.albumID and
albums.bandID=bands.bandID and albums.producerID=labels.producerID;

+---------------+-----------+-------------+-----------+--------+-----------+

| bandName | albumName | releaseDate | title | length | producer |

+---------------+-----------+-------------+-----------+--------+-----------+

| Justin Bieber | Believe | 2012-06-15 | Boyfriend | 171 | Messinger |

| Justin Bieber | Believe | 2012-06-15 | Take You | 220 | Messinger |

+---------------+-----------+-------------+-----------+--------+-----------+

2 rows in set (0.00 sec)

Nested queries
Nested queries let us use the results of one query in another query
For example, say we want to find info about the shortest song:
SELECT title, length FROM songs WHERE length=(SELECT
MIN(length) FROM songs);
+-----------+--------+
| title | length |
+-----------+--------+
| Boyfriend | 171 |
+-----------+--------+
1 row in set (0.00 sec)

Nested queries
We can combine the above with a join to get more data
select bandName, title, albumName from bands, albums, songs
where songs.length=(select min(length) from songs) and
songs.albumID=albums.albumID and
albums.bandID=bands.bandID;
+---------------+-----------+-----------+
| bandName | title | albumName |
+---------------+-----------+-----------+
| Justin Bieber | Boyfriend | Believe |
+---------------+-----------+-----------+
1 row in set (0.00 sec)

Nested Queries
other ways to search in the where clause:

◦ ANY, IN, SOME, ALL, EXISTS
select bandName from bands where bands.bandID = ANY (select
bandID from albums where albums.albumName like "%ll%");
+--------------+
| bandName |
+--------------+
| Moxy Fruvous |
| The Doors |
+--------------+

Accessing databases from php
PHP can connect to a MySQL database
◦ MySQLi extension
◦ Using PHP Data Objects (PDO) (https://secure.php.net/manual/en/class.pdo.php)

Which to choose?
◦ They are functionally equivalent, but MySQLi only works with MySQL
◦ Both are OO
◦ Both support Prepared Statements

◦ helps protect against SQL Injection

◦ PDO works with multiple databases
◦ better if you may need to access other databases

PDO connection
First step is to connect to the database
Create an instance of a PDO:
◦ $dbh = new PDO(“mysql:host=HOSTNAME;dbname=DATABASENAME”,

USERNAME, PASSWORD);
◦ it is best to keep the values (HOSTNAME, etc.) in a separate file
◦ should also put the connection call in a try catch to handle exceptions

<html>
<head><title>Database connection test</title></head>
<body>
<h1>Trying to connect...</h1>
<p><?php
$servername = "localhost";
$username = "carruths";
$password = "password";
$database = "carruths";
try{

$dbh = new PDO("mysql:host=$servername;dbname=$database", $username,
$password);

echo "Connect successfully";
}catch(PDOException $e){

echo "Connection failed: " . $e->getMessage();

}
?></p>
</body></html>

Querying the database
Create a query
pass it as a parameter to the query method
iterate through each record

<!--
<html>
<head><title>Database connection test</title></head>
<body>
<h1>Trying to connect...</h1>
<p><?php
$servername = "localhost";
$username = "carruths";
$password = "password";
$database = "carruths";
try{

$dbh = new PDO("mysql:host=$servername;dbname=$database", $username, $password);
$myQuery = "SELECT * FROM bands";
$resultset = $dbh->query($myQuery);
foreach ($resultset as $row){

echo "<pre>";
print_r($row);
echo "</pre>";

}

}catch(PDOException $e){
echo "Connection failed: " . $e->getMessage();

}
?></p>
</body></html>

Inserting into the database
Build a query using Insert
Because no resultset is returned, we use the exec function
if the insert fails, exec will return false

<html>
<head><title>Database connection test</title></head>
<body>
<h1>Trying to connect...</h1>
<p><?php
$servername = "localhost";
$username = "carruths";
$password = "password";
$database = "carruths";
try{

$dbh = new PDO("mysql:host=$servername;dbname=$database", $username, $password);
echo "Connect successfully\n";
$myQuery = "insert into albums (albumName, bandID, releaseDate) values ('Strange

Days', 3, '1967-10-16')";
if($dbh->exec($myQuery) !==false){

echo "The album was inserted";
}else{

echo "The album was not inserted";
}
$dbh = null;

}catch(PDOException $e){echo "Connection failed: " . $e->getMessage();}
?></p>
</body></html>

Insert using a form
See insertForm.php
Use the value of the dropdown for bandID
Let user type in an album

Add a value, and see it in db

More advanced example
Let’s build a table that contains the contents of the db
One album per row
Use the resultset to fill the table (eventually)

iterate through each row of the resultset
◦ and for each row, iterate through the values in it:
foreach($row as $field => value){

echo “field: $field, and value: $value <br”;

}

Using data from 2 tables
Now let’s use the band table to get the band’s name
Use a join to create a resultset with all the columns of both
◦ yes, we could be more specific...

Note about password information etc.
put connection information in a separate file and include it where
needed
give the file the extension .inc (not php) to minimize risk of it being
run as php by accident
give it the following permissions: 600
◦ should not be readable by anyone but owner

Prepared statements
When we need to execute similar statements over and over
◦ more efficient to use “prepared” statements
◦ reduces parsing time
◦ minimizes bandwidth
◦ help prevent SQL injections

How does it work?
◦ create a prepare statement that works like a template
◦ later, when we want to use it, values are binded to the parameters

More involved examples
Build a table using a join query (musicDemo.php)
Add paging to the table (musicPaginateDemo.php)
Add a launching page where user can select band from list, then see
all their songs (showAlbums.php)

Summary
We’ve seen basic MySQL functionality
Syntax
Operators
Basic Queries
More advanced queries
Accessing database from PHP
◦ connections
◦ forming queries
◦ working with data returned

