
JavaScript I.b
CSCI311

Learning Objectives
Learn basic JavaScript control and data structures
◦ arrays
◦ objects
◦ loops

JavaScript used for
user events and reactions
compute values and display
results
change style and position of
elements of HTML
display prompts or warnings
pop up windows or menus
detect info about browser

generate html
modify/transform page content
validate user entry
load pages
control media playback and
loading
control CSS transitions and
animations

A first JavaScript program
<body style="margin: 50px">

<section><h1>Hello JavaScript</h1>

<p>JavaScript programming is fun.</p>

<p>Time =

<script type="text/javascript">

var dt = new Date();

var time = dt.getHours() +":"+ dt.getMinutes();

document.write(time);</script></p>

<p>UA =

<script type="text/javascript">

document.write(navigator.userAgent);

</script></p></section>

</body>

</html> https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent

Where do we put JavaScript code?
embedded in a webpage
◦ in <script> elements

◦ any number of them
◦ in head, body, flow or phrasing elements

◦ JavaScript code is executed as it is encountered
◦ put functions or data structures in the head
◦ put <script> elements in the body where needed
◦ event actions can be put in attributes of tabs
◦ as values of event-handling attributes of HTML elements

kept in an external file (typically .js or .es suffix)
◦ shared across multiple pages

Image Rollover example
Use a mouse event in the image element to change the image when the mouse enters/leaves an element

<img onmouseover="this.src=’wt2.png’"
onmouseout="this.src=’wt1.png’ "
src="wt1.png" id="icon" alt="webtong.com logo" />

two events: onmouseover, onmouseout

JavaScript expression right in the event attribute

Better practice is the put this code in a function

Can also be achieved using opacity:
<img src="wt1.png" id="icon" alt="webtong.com logo"

onmouseover="this.style.opacity=0.4"
onmouseout=" this.style.opacity=1 "
/>

general format:
◦ target_obj.style.property=value

Arrays in JavaScript
List-like objects
Length of array and type of elements are not fixed
Elements are indexed using integers

Declaring an array:
◦ let myArray = [‘tree’, ‘rock’];

Accessing an index:
◦ let myValue = myArray[0];
◦ myArray[0] = ‘flower’;

Array Operations and Properties
Looping with foreach
◦ myArray.forEach(function(item, index, array){
◦ console.log(item, index);
◦ })

A few Array functions:
◦ push, pop
◦ shift, unshift
◦ indexOf
◦ splice(position, n)
◦ Slice

Array property:
◦ length

Accessing elements using strings
Arrays in JS are not associative, but we can “fake” key access by
defining properties of an existing array
let anotherArr = [];

anotherArr.thing1 = "banana";
anotherArr.thing2 = "anana";

anotherArr[0]; //will not access anything

anotherArr["thing1"]; //will output "banana"

Arrays in JavaScript
Accessing an unassigned element returns undefined
Assigning to an element beyond the length of an array lengthens the
array

Arrays
Arrays can contain Objects
Arrays are (a kind of) Object
Therefore, arrays can contain values of differing types:
◦ var myArr = [“this”, “is”, “gr”, 8, “!”];

for loop
JavaScript support foreach style loops
especially useful for associative arrays
works on both indexed and associative arrays
example:

ans=0;
arr=[7,8,9];
for(var k in arr) { ans+=arr[k]; }

general syntax:
◦ for (var key in arr){ /* do stuff */ }

Array oddities
You can add elements to arrays beyond their initial length:
◦ var myArr = [2, 4, 100];
◦ myArr[6] = 44;
◦ //contains: 2, 4, 100, , , , 44

This creates “holes” in the array, so be careful!!
Arrays are sorted by string order by default

JS Loops
Javascript also supports:
◦ For loops

◦ for(var i=0; i<10, i++)…

◦ While loops
◦ Do while loops

JS Conditional statements
JavaScript supports:
◦ if else, if else if
◦ switch statements
◦ Try catch

Objects
To create an object:
◦ var myObj = new Object();

To set properties:
◦ myObj.name = “Bob”;
◦ myObj[“name”] = “Bob”;

To get properties:
◦ var myName = myObj.name;
◦ myName = myObj[“name”];

Objects in JavaScript
One way of creating an object in Javascript:
◦ Pass in an object literal

Example:
◦ var flower = {colour:"white", name:"rose", edible:true};

Object methods are also defined as properties
Example:
◦ var flower = {
◦ colour:"white", name:"rose", edible:true,
◦ display:function(){return "a "+ this.colour + " " + this.name;}
◦ };

Using JavaScript with forms
We can use javascript to validate the data in a form before
submitting
To access the value of an input:
◦ Need to get access to that input element
◦ Then need access to its value

Ways to access html elements:
◦ By id: document.getElementById(“idName”);
◦ By tag name: document.getElementsByTageName(“tagName”);
◦ By class: document.getElementsByClassName(“className”);

Validation
A simple example…

