
CSCI311
JAVASCRIPT I

wow
such design
http://www.relativitycalculator.com/

And… xkcd colour names??!!:

https://www.w3schools.com/colors/colors_xkcd.asp

http://www.relativitycalculator.com/
https://www.w3schools.com/colors/colors_xkcd.asp

Today’s plan
Quick look at group project
Learn basic JavaScript syntax
◦ variables, literals, constants
◦ functions
◦ scope

Learn to use simple alerts, prompts
Discover how errors are handled in browser

Group project: Coming up...
Monday in Lab:
◦ Time to start on client side code (HTML, CSS, Maybe JavaScript)
◦ Get informal feedback

Feb. 16:
◦ Functional Prototype due
◦ Midway Report due (who will do what, internal deadlines, stretch goals)

Feb. 23:
◦ Peer evaluations
◦ Team and self-assessments

Group Project: Requirements
Your project must include:
◦ Server side programming
◦ Client side programming
◦ Adherence to design principles
◦ Dynamic page generation (either server-side or client-side, or both)
◦ Database access and use
◦ HTML for structure
◦ CSS for style
◦ User login
◦ Adherence to security principles
◦ Adherence to accessibility principles

JavaScript!!!

Javascript and html
How do we include JavaScript in our html?
◦ in <script> </script> element

<script>
document.getElementById("demo").innerHTML = "My First

JavaScript";
</script>

◦ in separate file:
<script type=“text/javascript” src="myScript.js"></script>

◦ In event in button or other element (onclick="getElementById(‘foo’).innerHTML =
'Hello!’;")

as of HTML5, the “type” is optional and will default to text/javascript if
not provided

javascript- modify HTML
Javascript updating the HTML page content using the DOM object
document
◦ document.writeln

javascript: syntax
basic unit:
◦ one-line statement or expression, followed by a semicolon

Case-sensitive
Free Format
Familiar function syntax

Familiar Comment style

javascript: methods or functions
JS is Object Oriented, so we use dot-notation to access Methods of
Objects
document.write(“Hi there!”);

document.writeln(“boo!?”);

Defining Functions
Function declaration
◦ function name([param[, param[, ... param]]]) { statements }

Function expression
◦ function [name]([param[, param[, ... param]]]) { statements }

Anonymous functions:
◦ var myFunction = function() { statements }

Immediately Invokable Function Expressions (IIFE):
◦ (function() { statements })();

Calling Functions
Specify the object that the method belongs to
◦ String.charAt();

If no object specifies, it is assumed to be the window object
◦ alert(“danger will robinson!”); // window.alert(“danger will robinson!”);

Quick and dirty JS Functions
prompt()
alert()
console.log()

JavaScript variables
Create variables using one of two statements:
◦ var

◦ var varname1 [= value1] [, varname2 [= value2] ... [, varnameN [= valueN]]];
◦ Let

◦ let var1 [= value1] [, var2 [= value2]] [, ..., varN [= valueN];

var Scope:
◦ Current execution context

◦ Enclosing function
◦ Global (if not in a function)

let Scope:
◦ Scope of current block (and enclosed blocks

JavaScript Variables
Declared
◦ Constrained to execution context they’re declared in
◦ Created before code executed
◦ Non-configurable (cannot be deleted)

Undeclared
◦ Always global

Variable Hoisting
A consequence of variables being processed before any code
executed
Variables can be used “before” being declared

Best practice:
◦ Declare variables at top

javascript: variables
Variable names are case sensitive
Must start with a letter, dollar sign or underscore
Subsequent characters can be digits 0-9

No reserved javascript keywords allowed
(https://developer.Mozilla.org/en/JavaScript/Reverence/Reserved_
Words)
Best practice: start variable names with a-z

javascript: constants
A read-only named constant
Created with the const keyword
◦ const name1 = value1 [, name2 = value2 [, ... [, nameN = valueN]]];

Same naming rules as for variables
Constants cannot change value or be re-declared

Cannot use the same name as an existing function or variable
const g = 10.5;

javascript: assignment

the single equals sign (=) is the assignment operator:
◦ e.g., variable = expression;

expression on the rhs is evaluated and the variable name on the lhs
represents the value
var a = 0; // declare variable a having value 0
a = 100+1; // variable a now has value 101
a = "cat"; // variable a now has value "cat"
var b = 0, c = true, d = "atom"; // 3 variables
a = b; // variable a now has value zero

javascript: block
a block statement is used to group one or more statements within braces
{}
commonly used with control flow
◦ loops, if/else...

{
statement_1;
statement_2;
…
statement_n;

}

javascript: block
Javascript does not have block scope
◦ variables declared within a block are scoped to the containing function or script
◦ any assignment of values continues beyond the block itself
◦ Unless you use let to declare

var a = 1;
{

var a = 5;
}
// variable a is 5

Javascript: variables
Multiple variables can be declared in one var statement, separated
by a comma:
◦ var a=0, b, c=100, d=“blue sky”, e = a;

This practice is more efficient than declaring each variable with a
separate var

BUT, it is harder to maintain code that is like this!

Javascript: data types
Eight primitive data types:
◦ Boolean
◦ Null
◦ Undefined
◦ Number
◦ BigInt
◦ String
◦ Symbol

Javascript: numeric

An integer number is a sequence of
digits
◦ Range: -2^53 to 2^53
◦ Base 10 integers don’t start with a zero
◦ Base 8 integers start with a 0 (deprecated)
◦ Base 16 integers start with 0x

var a = 0100; //a is 64

var b = 100; //b is 100

var c = 0x100; //c is 16

var d = 0x3a - 0200; //d is -70

var e = -073-0x0b; //e is -68

Javascript: numeric
Floating point literals
◦ Must have at least one digit and either a

decimal point, or ‘e’
◦ Range is 5e-324 to 1.797e308
◦ Javascript keyword: Infinity or –Infinity
◦ Number.POSITIVE_INFINITY,

Number.NEGATIVE_INFINITY,
Number.MAX_VALUE,

◦ Number.MIN_VALUE

var a = 10.0101;

var b = -0.99;

var c = 1.45E10;

var d = 2e-2;

var bigNum = 2/0; //is infinity

Javascript: string

strings store a piece of text
JavaScript has 2 kinds of strings: primitives and objects
primitives: can use JavaScript String() or assignment:
◦ var txt = String(“Hello”);
◦ var txt = “Hello”;

objects: use new String()
◦ var txt = new String(“Hello”);

Use primitive form unless object form is needed

Javascript: string

JavaScript literal strings are immutable
◦ Cannot modify them after declared
◦ Characters within them cannot be changed
◦ There is no Javascript method or property that allows you to change the

characters in a literal string

String Objects are mutable

Javascript: string
string length displayed using length method
◦ var txt_len = “hello”.length;

Empty string “” has a length of zero
Special characters such as “ ‘ \ and backspace, newline, tab, carriage
return, can be defined within a string:
◦ “\b” “\”” ‘\’ ’ “\\” “\n” “\t” “\r”
◦ var t = “He said, \”Welcome\”.”;

Javascript: string
Concatenation operators are + and +=
◦ “Welcome to “ + “my house” makes: “Welcome to my house”
◦ welcome+= “ Thank-you.” adds the string “Thank-you.” to the end of the string

variable named welcome
◦ can only be used on String objects (mutable)

Also: string1.concat(string2) method
◦ returns a new string with string1 concatenated onto string2

var n = “abc”;

var t = n.concat(“xyz”); // t is “abcxyz”, n is “abc”

Javascript: string

To access individual characters within a string in two ways
◦ Using charAt method

◦ “mouse”.charAt(1) is “o”

◦ As an array (first char is index zero)
◦ “mouse”[1] is “o”

◦ yes. You can do this!

var pet = “mouse”;

var c = pet.charAt(1); //c is “o”

c = pet[1]; //c is “o”

Javascript: string

substr method returns a portion of
a string
◦ string.substr(start_index, length)

◦ Length is option, but if not provided extract
characters until end of string

var answer = “quick”;

var n1 = answer.substr(1,2); //ui

var n2 = answer.substr(2); //ick

var n3 = answer.substr(-1); //k

Javascript: string

Replace method substitutes one
substring with another
◦ string.replace(search_string,

new_string);

var t = “white car with white seat”;

var n = t.replace(“white”, “blue”);

var p = t.replace(/white/g, “red”);

//n is “blue car with white seat”

//p is “red car with red seat”

//t is “white car with white seat”

Javascript: string

toLowerCase and toUpperCase
converts the string’s case
◦ These two methods require no

arguments

var city = “Victoria, BC”;

var n1 = city.toLowerCase();

// victoria, bc

var n2 = city.toUpperCase();

//VICTORIA, BC

//city is still: Victoria, BC”

Javascript: string
string “null” is not the same as null
string “undefined” is not the same as undefined
string “” is not the same as null or undefined

Javascript: boolean
boolean values are either true or false
double-equals operator (==)
◦ tests if two operands represent the same

value (but not the same type!)

triple-equals operator (===)
◦ tests if two operands represent the same

value and have the same type

non-zero numeric values equate to
true
null, undefined, NaN, and “” evaluate
to false

var a = true;

var b = false;

var c = (1==1); //c is true

var d = (a = 2); //d is true, a is 2)

var e = (1==“1”);// e is true

var f = (1 === “1”); // f is false

javascript: typing
JavaScript is a dynamically typed programming language
◦ variables are not defined by data type at declaration but by their values (or

‘literals’)

the type of a literal is defined based on context (run-time)
when combining literals of different types, the first type is used
Java and C are statically typed – the type of the variable is set at
compile time permanently

Javascript: typeof
the typeof operator is unary
◦ use of () optional
◦ typeof("pumpkin")
◦ typeof(563)
◦ typeof(true)
◦ typeof(null)
◦ typeof "squash"
◦ returns type of the operand: "number",
"string", "boolean",
"object", "function",
undefined, "xml"

Javascript: dynamic typing
var a = 99;

var b = "Ninety nine";

var c = 100 + 100; // c is 200

var d = (a < 100); // d is true

var e = d && (c > 100); // e is true

a = e; // a is true

var f = “100” + 10; // f is 10010

var g = “100” – 10; // g is 90

Javascript: weak typing
JavaScript is also weakly typed
◦ no restrictions on use of operators

(such as the plus sign) involving values
of different data types

JavaScript rule:
◦ when you use + with a number and a

string in any order you get a string
result

var a = 100;

var b = "+100";

var sum = a + b; // sum is "100+100"

not 200

sum = parseInt(a) + parseInt(b); //

sum is 200

javascript: casting
JavaScript data type examples
◦ "Count to " + 10 is "Count to 10"
◦ and 2.5 + "10" is "2.510"

parseInt() and parseFloat()
◦ parseInt("12") returns the integer 12
◦ parseFloat("33.23") returns 33.23
◦ parseInt("23.66") returns 23
◦ parseInt(undefined) and parseInt(null) returns NaN (not
a number)

◦ optional second argument is the radix (10 is default, 16, or 8 but that is deprecated)
parseInt("0xaa", 16) is 170 decimal.

see http://jsfiddle.net/Stevelang/vpenh/

http://jsfiddle.net/Stevelang/vpenh/

<script type="text/javascript">

var answer = 99;
answer = "Ninety nine ”;
var question = "What is 9 times 11? " + answer;
document.write(question + "
");
question = answer + " is 9 times what number?”;
document.write(question);

</script>

javascript: expressions
expressions in JavaScript come in four types
◦ assignment which assigns a value to a variable
◦ arithmetic evaluates to a number
◦ string evaluates to a string
◦ logical evaluates to a boolean value (true or false)

use the keyword var/let to declare a variable and optionally assign
it an initial value
a variable declared using var/let with no initial value has the value
undefined

Javascript: assignment
var x = 10;

var y = 5;

x += y; // x is now 15 (10 + 5)

x *= y; // x is now 75 (15 * 5)

x /= y; // x is now 15 (75 / 5)

x %= y; // x is now 0 (15 / 5 leaves 0

// remainder)

Javascript: assignment
var x = 10;

var y = 5;

var z;

x++; // increment operator; x is now 11

y--; // decrement operator; y is now 4

z = ++y; // z is 5 and y is now 5
z = x--; // z is 11 and x is now 10

JavaScript: Comparison Operators

Equality Operators:
◦ == (equality)
◦ === (identity)

Inequality Operators:
◦ != (inequality)
◦ !== (non-identity)

Comparison Operators:
◦ <, <=
◦ >, >=

Javascript: logical
And:
◦ &&

Or:
◦ ||

Not:
◦ !

Truthy and Falsy:
◦ What gets converted to true or false?

Short-circuiting

javascript: conditional
ternary operator as in C, C++
(expression) ? value1 : value2;
◦ if (expression) evaluates true, then value1 is returned; otherwise, value2 is

returned

var a = (3 == 4) ? "y" : "n"; // a is "n"

Demo
prompt to ask: What is 4+5?
check their answer
◦ if wrong, show some amazing art
◦ if right tell them they’re awesome! (with a pic)

Errors
error.html example

More practice
do w3schools tutorials: Introduction, Where To, Output, Syntax
MDN Tutorial: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Introduction

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction

