EVENTS

JavaScript: when

You Can {;YPQ
Your tode
"53}0{ into
\P"r web PasC:
or veterente

a separate
JavaSeript. file
wing the sre
attribute of
the sevipt tao,

Or tan
\:latlo‘ your tode
(or a veferente
to Yyour tode)
in the body.
This tode gets

exetuted as the

body is laaded.

Place <seript> elements in the
<head> of Your HTML 1o have them
exetuted before the page loads

4

<head> = ¥
W .:? ﬂ)
. <script>

: statement ?

/script>

~——

J Script sre="mycode js*>
</script> ij |

<script>

»7 J statement

/ statement
| ~ N </script>

: , i

(, Most of the time tode is added to the

head of the page. There are some slight

performance advantages to addimg your
tode at the end of body, but orly if

you really need to super—optimize Yyour

page’s performante

Where to place
your JS code

The way (client-side) JavaScript works

@

Ltlognd

<IDOCTYPE HTML>

<html>
<head>
<title> JS tutorial 17 </title>
<meta charset="utf-8">
</head>
<body>
<pre>
<script>
document.writeln("<H1> Immediate function invocation
</H1>");
var squareRoot = function (x){return Math.sqrt(x)} (100);
/ldefined and called inline
document.writeln ("squareRoot=" + squareRoot + "
");
</script>
</pre>
</body>

Write HTML file
(index.html), JavaScript file
(index.)s)

@

Browser parses HTML.
When JS is encountered, it
IS executed. In addition,
browser builds an internal
model of HTML page:
DOM

= =

©,

-

After page has been
loaded, JS continues to
interact with elements of
DOM, but only when
some event occurs

L
Interacting with DOM

- JS and HTML are two different things

- When the page is loaded, the browser creates an internal
model of the document: DOM

- JS interacts with DOM to get access to the elements of
the page: can add, remove, change appearance, content

- When JS modifies DOM, the browser re-renders the page

Nested elements

- All HTML documents consist of at least two levels of nesting

- At the top level is an <htmlI> element, defining the bounds of
the document

- The <head> and <body> elements are nested within <html|>

- <head> contains meta data — information about a document as
a whole, as opposed to content

- <body> holds all document content and all content elements,
both block and inline

- both the <htmI> and <body> elements are always present in an

HTML document — if they were not included by the author the
browser will add them

The nested structure of HTML can be
visualized as a tree

document
|

|

The nested structure of HTML can be
visualized as a tree

|

|
-

-

HTML structure visualizer

http://www.aharef.info/static/htmlgraph/

http://www.aharef.info/static/htmlgraph/
http://www.aharef.info/static/htmlgraph/
http://www.aharef.info/static/htmlgraph/

HTML and JS communicate through DOM:

var elem =
document.getElementById(“elem_id”);

elem.innerHTML = “new content”;

You can’'t mess with DOM until the page is
fully loaded
<script>

function init() {

var planet = document.getElementById("greenplanet");
planet.innerHTML = "Red Alert: hit by phaser fire!";

¥

window.onload = init; <_ This tells the browser:

= \Vhen the page is fully
</script> loaded — event
fires — execute code in
Init

L
Inner HTML — everything enclosed In the

referenced tag

<script>

function init() {
var planet = document.getElementById("greenplanet");
planet.innerHTML = "Red Alert: hit by phaser fire!";

}

window.onload = init;
</script>

<p id=“greenplanet”™

This is the
<ph>

content

of HTML element p
</p>

D
What JS can do with DOM

- Get elements from DOM: retrieve one element or a set of
element

- Create element, add elements
- Remove elements
- Get and set attributes of elements

Bullt-in browser objects

- Window
- Document
- Each element

L
Window object:
core properties and methods

window

location
status
document

solladoud

onload

alert
prompt
open
close
setTimeout
setinterval

spoyiaw

L
Window object:
core properties and methods

@) J5 tutorial 1 - Mozilla Firefox GRS |
¥ File Edit yi.;w 'Higtory Bookmarks Tools Help . —
) |2 IS tutorial 1 s .
5 window € & cxciviv.ca/~barskym/WP2013/J5 INTRC 77 7 X | B~ Google 2|
S location Most Visited | | Microsoft Outlook We... | | Course links M Barsky S
T | status
& | document \
onload \
Hello, world
. alert
@ | prompt
-0
S | open ok |
close
setTimeout
setinterval

Transferring data from csci.viu.ca...

Window object:
core properties and methods

window

location Reference to DOM
status /

document —

onload € Event fireq when
the page is
completely loaded

solladoud

alert
prompt
open
close
setTimeout
setinterval

spoyiaw

Document object

document __ The domain is the name of a
domain & server the document was
title served from: csci.viu.ca
URL

getElementByld
getElementsByTagName
getElementsByClassName

createElement

Document object

document

domain — The document title

title &
URL

getElementByld
getElementsByTagName
getElementsByClassName

createElement

Document object

document

domain

title

URL

getElementByld .

getElementsByTagName ¢— — Similar to getElementByld,

getElementsByClassName but returns an array of all
elements with the specified

createElement Tag or Class

Element objects

P

innerHTML
childElementCount
firstChild

appendChild
insertBefore
setAttribute
getAttribute

HTML Forms

- HTML forms are used to pass data to a server.

- An HTML form can contain input elements like text fields,
checkboxes, radio-buttons, submit buttons and more.

- For now we learn how to access these elements with
client-side JavaScript

L
HTML input element

- The most important form element is the <input> element.
- The <input> element is used to select user information.

- An <input> element can vary in many ways, depending on
the type attribute. An <input> element can be of type text
field, checkbox, password, radio button, submit button,
and more.

Input element

input function test()

inRerHTML {
g 5_ value var elem =) "
o2 |size document.getElementByld("test");
:I- cD . - n mn,
2 disabled elem.v_alue asdf'":
» elem.size = 125;

: elem.disabled=true;

onclick ... }
o < |onblur
§§ onchange
@& o |onfocus

Event listeners

- For each event we may attach a function, which will be
executed when event fires:

window.onload = init;

Pre-defined events

- Mouse events
- Keyboard events
- Page-level events

Mouse events

onclick
ondblclick

onmousedown

onmouseup (when a user releases a mouse button
over an element)

- onmousemove (when the pointer is moving while it is
over an element)
- onmouseover (when the pointer is moved onto an
element)

onmouseout (when a user moves the mouse pointer
out of an element)

Keyboard events

- onkeypress (when the user presses a key)

- onkeydown (when the user is pressing a

key)
- onkeyup (when the user releases a key)

Attaching a single event listener

window.onload = init;

var button = document.getElementById (“testButton®);
button.onclick = handleButtonClick();

or as a tag attribute:

<body onload=“init”>

<input type=“button” onclick=“handleButtonClick()”>

Registering multiple event listeners

element.addEventListener('click®,
startDragbDrop,false);

element.addEventListener('click',spyOnUser,false);

Syntax:

addEventListener() Allows the registration of event
listeners on the event target
(IE8 = attachEvent())

removeEventListener() Allows the removal of event
listeners on the event target
(IE8 = detachEvent())

Checking for browser support

If (window.addEventListener) {
window.addEventListener('load’, videoPlayer, false);

}

else if (window.attachEvent) {
window.attachEvent(‘onload', videoPlayer);

}

Event handling in nested elements

- If an element and one of its ancestors have an event
handler for the same event, which one should fire first?

Event handling in nested elements

- Netscape said that the event on Parent takes place first.
This iIs called event capturing.

- Microsoft maintained that the event on Child takes
precedence. This is called event bubbling.

W3C reconciliation

- Any event taking place in the W3C event model is first

captured until it reaches the target element and then
bubbles up again.

- You, the web developer, can choose whether to register
an event handler in the capturing or in the bubbling

phase. This is done through the addEventListener()’s
parameter 3:

If its last argument is true the event handler is set for the

capturing phase, if it is false the event handler is set for
the bubbling phase.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/

