
EVENTS
JavaScript: when

Where to place

your JS code

The way (client-side) JavaScript works

<!DOCTYPE HTML>

<html>

<head>

 <title> JS tutorial 17 </title>

 <meta charset="utf-8">

</head>

<body>

 <pre>

 <script>

 document.writeln("<H1> Immediate function invocation

</H1>");

 var squareRoot = function (x){return Math.sqrt(x)} (100);

 //defined and called inline

 document.writeln ("squareRoot=" + squareRoot + "
");

 </script>

 </pre>

</body>

</html>

marku

p
js

1 2 3

js

Write HTML file

(index.html), JavaScript file

(index.js)

Browser parses HTML.

When JS is encountered, it

is executed. In addition,

browser builds an internal

model of HTML page:

DOM

After page has been

loaded, JS continues to

interact with elements of

DOM, but only when

some event occurs

Interacting with DOM

• JS and HTML are two different things

• When the page is loaded, the browser creates an internal

model of the document: DOM

• JS interacts with DOM to get access to the elements of

the page: can add, remove, change appearance, content

• When JS modifies DOM, the browser re-renders the page

Nested elements

• All HTML documents consist of at least two levels of nesting

• At the top level is an <html> element, defining the bounds of
the document

• The <head> and <body> elements are nested within <html>

• <head> contains meta data – information about a document as
a whole, as opposed to content

• <body> holds all document content and all content elements,
both block and inline

• both the <html> and <body> elements are always present in an
HTML document – if they were not included by the author the
browser will add them

The nested structure of HTML can be

visualized as a tree

document
type

html

head

title
character

set

body

heading paragraph section

heading paragraph

The nested structure of HTML can be

visualized as a tree

<!DOCTYPE> <html>

<head>

<title> <meta>

<body>

<h1> <p> <section>

<h2> <p>

HTML structure visualizer

http://www.aharef.info/static/htmlgraph/

http://www.aharef.info/static/htmlgraph/
http://www.aharef.info/static/htmlgraph/
http://www.aharef.info/static/htmlgraph/

HTML and JS communicate through DOM:

var elem =
document.getElementById(“elem_id”);

elem.innerHTML = “new content”;

You can’t mess with DOM until the page is

fully loaded
<script>

 var planet = document.getElementById("greenplanet");

 planet.innerHTML = "Red Alert: hit by phaser fire!";

 window.onload = ;

</script>

This tells the browser:

when the page is fully

loaded – onload event

fires – execute code in

init

Inner HTML – everything enclosed in the

referenced tag
<script>

 function init() {
 var planet = document.getElementById("greenplanet");
 planet. = "Red Alert: hit by phaser fire!";
 }
 window.onload = init;

</script>

<p id=“greenplanet”>

</p>

What JS can do with DOM

• Get elements from DOM: retrieve one element or a set of

element

• Create element, add elements

• Remove elements

• Get and set attributes of elements

Built-in browser objects

• Window

• Document

• Each element

Window object:

core properties and methods

window

location

status

document

alert

prompt

open

close

setTimeout

setInterval

onload

p
ro

p
e

rtie
s

m
e

th
o

d
s

Window object:

core properties and methods

window

location

status

document

alert

prompt

open

close

setTimeout

setInterval

onload

p
ro

p
e

rtie
s

m
e

th
o

d
s

Window object:

core properties and methods

window

location

status

document

alert

prompt

open

close

setTimeout

setInterval

onload

p
ro

p
e

rtie
s

m
e

th
o

d
s

Reference to DOM

Event fired when

the page is

completely loaded

Document object

document

domain

title

URL

getElementById

getElementsByTagName

getElementsByClassName

createElement

The domain is the name of a

server the document was

served from: csci.viu.ca

Document object

document

domain

title

URL

getElementById

getElementsByTagName

getElementsByClassName

createElement

The document title

Document object

document

domain

title

URL

getElementById

getElementsByTagName

getElementsByClassName

createElement

Similar to getElementById,

but returns an array of all

elements with the specified

Tag or Class

Element objects

p

innerHTML

childElementCount

firstChild

appendChild

insertBefore

setAttribute

getAttribute

HTML Forms

• HTML forms are used to pass data to a server.

• An HTML form can contain input elements like text fields,

checkboxes, radio-buttons, submit buttons and more.

• For now we learn how to access these elements with

client-side JavaScript

HTML input element

• The most important form element is the <input> element.

• The <input> element is used to select user information.

• An <input> element can vary in many ways, depending on

the type attribute. An <input> element can be of type text

field, checkbox, password, radio button, submit button,

and more.

Input element

input

innerHTML

value

size

disabled

onclick …

onblur

onchange

onfocus

function test()

{

 var elem =

document.getElementById("test");

 elem.value = "asdf";

 elem.size = 125;

 elem.disabled=true;

}

u
n

iq
u

e

p
ro

p
e
rtie

s

u
n
iq

u
e

e
v
e
n
ts

Event listeners

• For each event we may attach a function, which will be

executed when event fires:

window.onload = ;

Pre-defined events

• Mouse events

• Keyboard events

• Page-level events

Mouse events

• onclick

• ondblclick

• onmousedown

• onmouseup (when a user releases a mouse button
 over an element)

• onmousemove (when the pointer is moving while it is
 over an element)

• onmouseover (when the pointer is moved onto an
 element)

• onmouseout (when a user moves the mouse pointer
 out of an element)

Keyboard events

• onkeypress (when the user presses a key)

• onkeydown (when the user is pressing a

 key)

• onkeyup (when the user releases a key)

Attaching a single event listener

window.onload = ;

var button = document.getElementById (“testButton”);

button.onclick = ;

or as a tag attribute:

<body onload=“ ”>

<input type=“button” onclick=“ ()”>

Registering multiple event listeners

element.addEventListener('click‘,
 startDragDrop,false);

element.addEventListener('click',spyOnUser,false);

Syntax:

addEventListener() Allows the registration of event

 listeners on the event target

 (IE8 = attachEvent())

removeEventListener() Allows the removal of event

 listeners on the event target

 (IE8 = detachEvent())

Checking for browser support

if (window.addEventListener) {

 window.addEventListener('load', videoPlayer, false);

}

else if (window.attachEvent) {

 window.attachEvent('onload', videoPlayer);

}

Event handling in nested elements

• If an element and one of its ancestors have an event

handler for the same event, which one should fire first?

--

| elementP |

| ------------------------- |

| |elementC |

| ------------------------- |

| |

--

Event handling in nested elements

• Netscape said that the event on Parent takes place first.

This is called event capturing.

• Microsoft maintained that the event on Child takes

precedence. This is called event bubbling.

--

| elementP |

| ------------------------- |

| |elementC |

| ------------------------- |

| |

--

W3C reconciliation

• Any event taking place in the W3C event model is first

captured until it reaches the target element and then

bubbles up again.

• You, the web developer, can choose whether to register

an event handler in the capturing or in the bubbling

phase. This is done through the addEventListener()’s

parameter 3:

If its last argument is true the event handler is set for the

capturing phase, if it is false the event handler is set for

the bubbling phase.

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/

