
Web Programming
CSCI 311

Any software that is capable of
communication over a network (especially
the internet).

For example:
◦ Skype

◦ Word (you can download resources – themes,
clipart, etc.)

◦ Call of Duty

◦ World of Warcraft

For the purpose of this course, we label
these “web-aware” – not “web applications.”

Web-Aware Software

We label software a “web application” if it
is designed to run in a web browser –
specifically, without plug-ins.

A complete web app consists of:
◦ A front-end running in a browser (i.e. Mozilla,

Chrome, Internet Explorer, Safari, Opera, etc.)

◦ A back-end running on a server-machine –
usually remote

◦ The two components must interact

Web Applications – in this course

The Web – internet – is a global system of
interconnected computer networks.

Internet traffic consists of client/server
communication, via a set of standardized
protocols.

The Web

(Web Technology Timeline)

Through the years, many web technologies
were invented and implemented – some
became standardized, then dropped.

Some technologies persist – though in a
different form.

In five years – this course would look very
different.

History of the Web

http://www.evolutionoftheweb.com/
http://www.youtube.com/watch?v=9hIQjrMHTv4

One major tendency in the web today is the
standardization of client-side technologies.

These are, in turn, implemented in
browsers, which may differ, but all adhere to
the base-level standard.

The current client-side standard set is
established and maintained by the W3C, and
is referred to using the umbrella term –
HTML5.

While not all browser fully support the
standard, by 2014 – when HTML5 is finalized
– they all should.

The Web Today

Includes:
◦ HTML 5 – for semantic page structuring

◦ CSS 3 – for page styling

◦ JavaScript – for programming on the web

◦ Web Workers – for program performance

◦ Local Storage – for caching data on client
machines

◦ Canvas – for real-time graphics

◦ (Native Audio and Video) – partially
implemented

Browser Support for HTML5

The HTML5 Standard

http://gsnedders.html5.org/outliner
http://wickedlysmart.com/hfhtml5/browsersupport.html

Using the robust infrastructure of the web,
and combined with the newly emerging
HTML5 client-side standard – we may
develop software that:

◦ Has low latency/high enjoyment user
experience which rivals that of traditional
desktop software

◦ Is web-enabled

◦ Is device-portable/agnostic

◦ Has few version control issues

◦ Has a low barrier of entry for users – because
there is no need to install software beyond
the browser

Browser Quest – A showcase of Canvas,
HTML5 Audio and WebSockets by Mozilla
Foundation

Modern Web Applications

http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/

How the Web Works (in very simple terms)
or – Internet, How? How Internet!

The “web” consists of billions of individual
machines.

When one machine wants to communicate
with another, it must send a communication
request – the requesting machine is a client,
the responding is a server.

The Client/Server Model

Individual machines are identified by their
 .

The IP (protocol) is used to route a message
from one machine to another.

TCP is a transfer protocol which ensures the
message is delivered unharmed – this is done
using a concept known as a checksum.

Many communication protocols may
piggyback on TCP – we are interested in
HTTP.

TCP/IP

HTTP is a standardized protocol for
communication – as opposed to transfer – of
clients and servers on the web.

HTTP (hypertext transfer protocol)

An HTTP client-sent message – a request –
consists of:

◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

Using the DNS servers and IP address, the
destination machine is identified.

The message is than delivered to the
destination machine – which resolves the
request accordingly.

HTTP – request

◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: GET
GET
/ServiceLogin?service=mail&passive=true&rm
=false

host:accounts.google.com
user-agent:Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.11 (KHTML, like Gecko)
Chrome/23.0.1271.97 Safari/537.11
version:HTTP/1.1
accept:text/html,application/xhtml+xml,app
lication/xml;q=0.9,*/*;q=0.8
accept-charset:ISO-8859-1,utf-
8;q=0.7,*;q=0.3
accept-encoding:gzip,deflate,sdch
accept-language:en-US,en;q=0.8
referer:https://signup.netflix.com/

◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: GET
GET
/ServiceLogin?service=mail&passive=true&rm
=false

host:accounts.google.com
user-agent:Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.11 (KHTML, like Gecko)
Chrome/23.0.1271.97 Safari/537.11
version:HTTP/1.1
accept:text/html,application/xhtml+xml,app
lication/xml;q=0.9,*/*;q=0.8
accept-charset:ISO-8859-1,utf-
8;q=0.7,*;q=0.3
accept-encoding:gzip,deflate,sdch
accept-language:en-US,en;q=0.8
referer:https://signup.netflix.com/

◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: GET
GET
/ServiceLogin?service=mail&passive=true&rm
=false

host:accounts.google.com
user-agent:Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.11 (KHTML, like Gecko)
Chrome/23.0.1271.97 Safari/537.11
version:HTTP/1.1
accept:text/html,application/xhtml+xml,app
lication/xml;q=0.9,*/*;q=0.8
accept-charset:ISO-8859-1,utf-
8;q=0.7,*;q=0.3
accept-encoding:gzip,deflate,sdch
accept-language:en-US,en;q=0.8
referer:https://signup.netflix.com/

POST = GET ++
◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: POST
POST

/mail/ca/u/0/?ui=2&ik=107df84a1e&rid=mail%3Ai.680f.0.
1&view=cv&th=13c04134dc1284ab&th=13c0255dc95e706

host:mail.google.com
scheme:https
version:HTTP/1.1
accept:*/*
…
ui:2
ik:107df84a1e
rid:mail:i.680f.0.1
view:cv
prf:1
nsc:1
mb:0
search:inbox

POST = GET ++
◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: POST
POST

/mail/ca/u/0/?ui=2&ik=107df84a1e&rid=mail%3Ai.680f.0.
1&view=cv&th=13c04134dc1284ab&th=13c0255dc95e706

host:mail.google.com
scheme:https
version:HTTP/1.1
accept:*/*
…
ui:2
ik:107df84a1e
rid:mail:i.680f.0.1
view:cv
prf:1
nsc:1
mb:0
search:inbox

POST = GET ++
◦ A method name

◦ A destination indicator – an address (IP or
URL) and a resource name (a file)

◦ Optional parameters – collected from a user
form

HTTP – request: POST
POST

/mail/ca/u/0/?ui=2&ik=107df84a1e&rid=mail%3Ai.680f.0.
1&view=cv&th=13c04134dc1284ab&th=13c0255dc95e706

host:mail.google.com
scheme:https
version:HTTP/1.1
accept:*/*
…
ui:2
ik:107df84a1e
rid:mail:i.680f.0.1
view:cv
prf:1
nsc:1
mb:0
search:inbox …

An HTTP server-sent response includes:
◦ A status code – indicating the success or

failure of a request

◦ Content type

◦ The requested resource (if the request was
successful)

The communication then terminates.

HTTP – response

An HTTP server sent response includes:
◦ A status code – indicating the success or

failure of a request

◦ Content type

◦ The requested resource (if the request was
successful)

Response Header
cache-control:no-cache, no-store, max-

age=0, must-revalidate
content-encoding:gzip
content-length:10445
content-type:text/javascript; charset=UTF-8
date:Fri, 04 Jan 2013 13:20:42 GMT
expires:Fri, 01 Jan 1990 00:00:00 GMT
pragma:no-cache
server:GSE
status:200 OK
version:HTTP/1.1
x-content-type-options:nosniff
x-frame-options:SAMEORIGIN
x-xss-protection:1; mode=block

HTTP – response

An HTTP server sent response includes:
◦ A status code – indicating the success or

failure of a request

◦ Content type

◦ The requested resource (if the request was
successful)

Response Header
cache-control:no-cache, no-store, max-

age=0, must-revalidate
content-encoding:gzip
content-length:10445
content-type:text/javascript; charset=UTF-8
date:Fri, 04 Jan 2013 13:20:42 GMT
expires:Fri, 01 Jan 1990 00:00:00 GMT
pragma:no-cache
server:GSE
status:200 OK
version:HTTP/1.1
x-content-type-options:nosniff
x-frame-options:SAMEORIGIN
x-xss-protection:1; mode=block

HTTP – response

All data in the request-response messages
except for the content (the requested
resource) is metadata – called the http
header.

This helps the software on both sides to
understand the message and act
appropriately (but it also adds overhead).

HTTP communication

WebSocket is a communication protocol
that piggybacks on top of HTTP.

A WebSocket session begins as an HTTP
request, which tells the server to establish
and keep an open two-sided connection with
the specific client.

Additionally, WebSocket communications
lack most header information, such as
resource type and so on. This means that the
client and server must know what to
anticipate in a message; but it also
significantly reduces bandwidth overhead.

WebSocket

Course Mechanics

Prior programming experience with any
language

HTML and CSS basics

Prerequisites

o JavaScript – the language of the web

o HTML5 and CSS 3 – GUI

o Drawing on Canvas

o HTTP servers:

PHP

Server pages

NodeJS

o WebSockets

o Storing data:

XML and JSON file format

SQLite relational database

MongoDB NoSQL database

o Security and scalability

Topics covered

(Web Technology Timeline)

http://www.evolutionoftheweb.com/

o JavaScript – the language of the web

o HTML5 and CSS 3 – GUI

o Drawing on Canvas

o HTTP servers:

PHP

Server pages

NodeJS

o WebSockets

o Storing data:

XML and JSON file format

SQLite relational database

MongoDB NoSQL database

o Security and scalability

Topics covered in-depth

(Web Technology Timeline)

http://www.evolutionoftheweb.com/

4 programming assignments 50%:
◦ Math games with JavaScript

◦ Board games with JavaScript, DOM, canvas

◦ Multi-player chat game

◦ Players database

Final project 30% (0 or 1 collaborator)

Lab assignments 20%

In-class quizzes 15%

Deliverables

By the end you should be able to
implement project that is of interest to you

Our goal is to build an application or a
prototype that clients around the globe could
access (and we become obscenely reach)

Project

All deliverables will be submitted
electronically

Assignments are due at 11:59 p.m. on the
due date - check website for final due dates

Late Work Policy: Accepted up to a week
after the due date with a 3% penalty per day

Marking by Demonstrations (???)

Submissions

“The work you submit must be your own,
done without participation by others. It is an
academic offense to hand in anything written
by someone else without acknowledgement.”

You are not helping your friend when you
give him or her a copy of your work

You are hurting your friend when you ask
him or her to give you a copy of their work

Work ethics

Browser: Google Chromium

Text Editor: Emacs

Nodejs

SQLite database

MongoDB

Deliver and upload to Amazon EC-2 server

Lab Environment

Course Resources
Appendix

•Mozilla Developer Network

•An Implementation of the HTML5 Outline
Algorithm

•HTML Rocks – Google HTML5 Showcase

•Browser Support for HTML5

•Browser Quest – A showcase of Canvas ,
HTML5 Audio and WebSockets by Mozilla
Foundation

Links

https://developer.mozilla.org/en-US/
http://gsnedders.html5.org/outliner/
http://gsnedders.html5.org/outliner/
http://www.html5rocks.com/en/
http://www.html5rocks.com/en/
http://www.html5rocks.com/en/
http://www.html5rocks.com/en/
http://wickedlysmart.com/hfhtml5/browsersupport.html
http://wickedlysmart.com/hfhtml5/browsersupport.html
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/
http://browserquest.mozilla.org/

JavaScript: The Definitive guide [Kindle
Edition], by David Flanagan

Also can read and download this book
through free trial on Safari books online

Good JavaScript reference book

http://www.amazon.com/JavaScript-Definitive-Guide-Guides-ebook/dp/B004XQX4K0/ref=tmm_kin_title_0
http://www.amazon.com/JavaScript-Definitive-Guide-Guides-ebook/dp/B004XQX4K0/ref=tmm_kin_title_0
http://www.safaribooksonline.com/

HTML, XHTML, and CSS: Your visual
blueprint for designing effective Web pages,
by Rob Haddleston

PHP & MySQL: Your visual blueprint for
creating dynamic, database-driven Web sites,
by Janet Valade

JavaScript: Your Visual Blueprint for Building
Dynamic Web Pages, 2nd Edition by Eric
Pascarello

Optional textbooks

