
GEOLOCATION

Why to use geolocation

Knowing where your users are can add a lot to a web
experience:

• you can give them directions,

• make suggestions about where they might go,

• you can know it’s raining and suggest indoor activities,

• you can let your users know who else in their area
might be interested in some activity.

With HTML5 (and the Geolocation JavaScript-based API)
you can easily access location information in your pages

Coordinates
• To know where you are, you

need a coordinate system on the
Earth’s surface: latitude and
longitude

• Latitude specifies a north/south
point on the Earth, and
longitude, an east/west point.

• Latitude is measured from the
equator, and longitude is
measured from Greenwich,
England.

• The job of the geolocation API is
to give us the coordinates of
where we are at any time, in
terms of latitude and longitude

Units

• You’ve probably seen latitude and longitude specified in degrees/ minutes/
seconds, such as (47˚38’34’’, 122˚32’32’’), and in decimal values, such as (47.64, -
122.54).

• With the Geolocation API we always use decimal values. To convert from degrees
to decimals:

function degreesToDecimal(degrees, minutes, seconds) {
return degrees + (minutes / 60.0) + (seconds / 3600.0);

}

How browsers determine location

• Browsers are using different ways to determine
where you are, some more accurate than
others.

GPS

• Global Positioning System, supported by many
newer mobile devices, provides extremely
accurate location information based on satellites.

• Location data may include altitude, speed and
heading information.

• To use it your device has to be able to see the sky,
and it can take a long time to get a location.

• GPS can also be hard on your batteries.

IP Address

• Location information based on your IP address
uses an external database to map the IP
address to a physical location.

• The advantage of this approach is that it can
work anywhere; however, often IP addresses
are resolved to locations such as your ISP’s
local office.

• Think of this method as being reliable to the
city or sometimes neighborhood level.

Cell phone triangulation

• Cell phone triangulation figures out your location
based on your distance from one or more cell phone
towers (the more towers, the more accurate the
location).

• This method can be fairly accurate and works indoors
(unlike GPS); it also can be much quicker than GPS.

• Then again, if you’re in the middle of nowhere with
only one cell tower, your accuracy is going to suffer

WiFi

• WiFi positioning uses one or more WiFi access
points to triangulate your location.

• This method can be very accurate, works
indoors and is fast.

• Obviously it requires you are somewhat
stationary.

What method is my browser using?

• The browser can use any of these means to
determine your location.

• In fact, a smart browser might first use cell phone
triangulation, if it is available, to give you a rough
idea of location, and then later give you a more
accurate location with WiFi or GPS.

• Based on the accuracy, you can determine how
useful the location is going to be for you

Browser support

Well supported by all modern browsers:

Internet Explorer 9, Firefox, Chrome, Safari and
Opera

Adding geolocation: HTML page
<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Where am I?</title>

<script src="myLoc.js"></script>

<link rel="stylesheet" href="myLoc.css">

</head>

<body>

<div id="location">

Your location will go here.

</div>
</body>

</html>

Adding geolocation: JavaScript

window.onload = getMyLocation;

function getMyLocation() {

if (navigator.geolocation)

{

navigator.geolocation.getCurrentPosition(displayLocation);

}

else

{

alert("Oops, no geolocation support");

}

}

Handler: displayLocation

function displayLocation(position) {

var latitude = position.coords.latitude;

var longitude = position.coords.longitude;

var div = document.getElementById("location");

div.innerHTML = "You are at Latitude: " + latitude + ",
Longitude: " + longitude;

}

Test drive

• link

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/latlong/myLoc.html

Geolocation API

navigator.

geolocation.

getCurrentPosition(successHandler,

errorHandler, options)

function displayLocation(position) {

}

Position is an object that is passed into
your success handler by the geolocation
API

Error handler

function displayError(error)
{ var errorTypes = {

0: "Unknown error",
1: "Permission denied",
2: "Position is not available",
3: "Request timeout" };

var errorMessage = errorTypes[error.code];
if (error.code == 0 || error.code == 2) {

errorMessage = errorMessage + " " + error.message; }

var div = document.getElementById("location");
div.innerHTML = errorMessage;

}

Test: link

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/latlong/myLoc.html

To test on mobile device: put your files on the
server.

Try:

http://csci.viu.ca/~barskym/teaching/WP2013/
GEOLOCATION_LECTURE/latlong/myLoc.html

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/latlong/myLoc.html

Calculating distance
between two locations

• To compute the distance between two points on a sphere use the Haversine
equation:

function computeDistance(startCoords, destCoords) {
var startLatRads = degreesToRadians(startCoords.latitude);
var startLongRads = degreesToRadians(startCoords.longitude);
var destLatRads = degreesToRadians(destCoords.latitude);
var destLongRads = degreesToRadians(destCoords.longitude);
var radius = 6371; // radius of the Earth in km

var distance = Math.acos(Math.sin(startLatRads) * Math.sin(destLatRads) +
Math.cos(startLatRads) * Math.cos(destLatRads) *
Math.cos(startLongRads - destLongRads)) * radius;

return distance;
}

Test: link

function degreesToRadians(degrees) {
var radians = (degrees * Math.PI)/180;
return radians;
}

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/distance/myLoc.html

Quiz: What does this code do

if (km < 0.1) {

distance.innerHTML = "You're on fire!";

} else {

if (prevKm < km) {

distance.innerHTML = "You're getting hotter!";

} else {

distance.innerHTML = "You're getting colder...";

}

}

prevKm = km;

Visualizing location: Google map API

• Geolocation API is simple—it gives you a way
to find where you are, but it doesn’t provide
you with any tools to visualize your location.

• To do that we need to rely on a third-party
tool. Google Maps is by far the most popular
tool for doing that.

Add script and map element

<script
src="http://maps.google.com/maps/api/js?sensor=true">

</script>

<body>

…

<div id="map">

</div>

</body>

</html>

Setting map parameters

var googleLatAndLong = new

google.maps.LatLng(latitude, longitude);

var mapOptions = {

zoom: 10, //0 -21

center: googleLatAndLong,

mapTypeId: google.maps.MapTypeId.ROADMAP
//SATELLITE, HYBRID

};

Creating a map
var map;
function showMap(coords) {

var googleLatAndLong =new google.maps.LatLng(coords.latitude,
coords.longitude);

var mapOptions = {
zoom: 10,
center: googleLatAndLong,
mapTypeId: google.maps.MapTypeId.ROADMAP

};

var mapDiv = document.getElementById("map");
map = new google.maps.Map(mapDiv, mapOptions);

}
Another constructor from Google,
which takes as parameters an
HTML element and map options

Test: link

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/map/myLoc.html

Sticking a pin in it

function addMarker(map, latlong, title, content) {

var markerOptions = {

position: latlong,

map: map,

title: title,

clickable: true

};

var marker = new google.maps.Marker(markerOptions);

}

Adding a marker with a pop-up
information window

function addMarker(map, latlong, title, content) {

...

var infoWindowOptions = {

content: content,

position: latlong

};

var infoWindow = new
google.maps.InfoWindow(infoWindowOptions);

google.maps.event.addListener

(marker, "click", function() {

infoWindow.open(map);

});

}

Add to showMap

var title = "Your Location";

var content = "You are here: " + coords.latitude + ", " +
coords.longitude;

addMarker(map, googleLatAndLong, title, content);

Test: link

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/marker/myLoc.html

More Google maps API
• Controls: By default, your Google map includes several controls, like the

zoom control, the pan control, a control to switch between Map and
Satellite view, and even the Street View control (the little pegman above
the zoom control). You can access these controls programmatically from
JavaScript to make use of them in your applications.

• Overlays: Overlays provide another view on top of a Google map; say, a
heat map overlay. If you’re commuting, you can check traffic congestion
with the traffic overlay. You can create custom overlays, like custom
markers, your photos, and pretty much anything else you can imagine,
using the Google Maps overlay APIs.

• Services: Ever looked up directions in Google Maps? If so, then you’ve
used the Directions service. You have access to directions, as well as other
services, like distance and street view through the Google Maps services
APIs.

http://code.google.com/apis/maps/documentation/javascript/

http://code.google.com/apis/maps/documentation/javascript/

Geolocation object

getCurrentPosition(successHandler, errorHandler, positionOptions)

position

passes

coords
timestamp

Coordinates

atitude
longitude
accuracy

altitude
altitudeAccuracy
heading
speed

These may be
not supported
by your device

getCurrentPosition
watchPosition
clearWatch

geolocation

Accuracy

• Finding your location isn’t an exact science. Depending on
the method the browser uses, you may know only the
state, city, or city block you’re on.

• With more advanced devices you might know your location
to within 10 meters, complete with your speed, heading
and altitude.

div.innerHTML = "You are at Latitude: " + latitude
+ ", Longitude: " + longitude;

div.innerHTML += " (with " + position.coords.accuracy
+ " meters accuracy)";

Test: link

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/accuracy/myLoc.html

watchPosition method

The watchPosition method looks just like the
getCurrentPosition method, but behaves a little
differently: it repeatedly calls your success
handler each time your position changes.

getCurrentPosition
watchPosition
clearWatch

geolocation

Tracking position

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition();
var watchButton =

document.getElementById("watch");
watchButton.onclick = watchLocation;
var clearWatchButton =

document.getElementById("clearWatch");
clearWatchButton.onclick = clearWatch;

}
else {

alert("Oops, no geolocation support");
}

On button clicks: watch location,
or clear watch

var watchId = null;
function watchLocation() {

watchId = navigator.geolocation.watchPosition (displayLocation,
displayError);

}

function clearWatch() {
if (watchId) {

navigator.geolocation.clearWatch(watchId);
watchId = null;

}
}

Test (on smart phone):
http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/watchmepan
/myLoc.html

http://csci.viu.ca/~barskym/teaching/WP2013/GEOLOCATION_LECTURE/watchmepan/myLoc.html

Options of getCurrentPosition

getCurrentPosition(successHandler, errorHandler,
positionOptions)

navigator.geolocation.getCurrentPosition(

displayLocation,

displayError,

{enableHighAccuracy: true,

maximumAge: 60000,

timeout:5000});

Maximum age and timeout in milliseconds

The world of
timeout and maximum age

• Timeout

This option tells the browser how long it gets to determine the user’s
location. Note that if the user is prompted to approve the location
request, the timeout doesn’t start until then. If the browser can’t
determine a new location within the number of milliseconds specified in
the timeout, the error handler is called. By default, this option is set to
Infinity.

• MaximumAge

This option tells the browser how old the location can be. So, if the
browser has a location that was determined 60 seconds ago, and
maximumAge is set to 90000 (90 seconds), then a call to
getCurrentPosition would return the existing, cached position (the
browser would not try to get a new one). But if the maximumAge was
set to 30 seconds, the browser would be forced to determine a new
position.

Quiz: Who does what

{maximumAge:600000} I want only cached positions less than
10 minutes old. If there aren’t any
cached positions less than 10 minutes
old, I ask for a new position, but only
if I can get one in 1 second or less

{timeout:1000, maximumAge:600000} I’ll use a cached position if the
browser has one that’s less than 10
minutes old, otherwise, I want a fresh
position.

{timeout:0, maximumAge:Infinity} I want only fresh positions. The
browser can take as long it wants to
get me one.

{timeout:Infinity, maximumAge:0} I want only cached positions. I’ll take
one of any age. If there is no cached
position at all, then I call the error
handler. No new positions for me! I’m
for offline use.

A

B

C

D

1

2

3

4

If your location is not displayed

• That is most likely because of the infinite
timeout. In other words the browser will wait
forever to get a location as long as it doesn’t
encounter some error condition.

• Now you know how to fix that, because we
can force the Geolocation API to be a little
more expedient by setting its timeout value.

