
Leftovers

Last lecture and labs

1

Java code documentation

Java supports three types of comments. The first two
are the // and the /* */.

The third type is called a documentation comment. It
begins with the character sequence

/** and it ends with */.

2

Class description:
add class description for each class

import java.io.*;

/** * This class demonstrates documentation comments.

* @author Tom Jones <address @ example.com>

* @version 1.2

* @since 2010-03-31 (the version of the package this class was
first added to)*/

public class SquareNum{ …

Note: before class definition
and after all import
statements

3

Method description:
parameters and return type

 /**

 * This method returns the square of num.

 *

 * This is a multiline description. You can use

 * as many lines as you like.

 *

 * @param num The value to be squared.

 * @return num squared.

 */

 public double square(double num) {

 return num * num;

 }

4

Testing your code for logical errors

• A method can fail for two reasons:

– Logical error in its implementation.

– Inability to obtain needed resource from
environment.

5

Exception

6

Programming by contract

Programming style in which invocation of a method is
viewed as a contract between client program and
server classes, with each having explicitly stated
responsibilities.

7

Documenting responsibilities
/**

 * Create a new Explorer with the specified name,

 * initial location, strength, and tolerance.

 *

 * @require strength >= 0

 * tolerance >= 0

 * name.length() > 0

 */

public Explorer (String name, int strength, int tolerance)

8

Programming by contract

• Preconditions: requirements on client of a
method.

– Labeled “require”

• Postconditions: requirements on server of a
method.

– labeled “ensure”

• Preconditions and postconditions are part of the
contract.

9

Programming by contract

• For method invocation to be correct:

– client must make sure that preconditions are
satisfied at time of call.

– If preconditions are satisfied, server guarantees
that postconditions will be satisfied when method
completes otherwise server promises nothing at
all.

10

Programming by contract

• Consequence: test for every possible error
condition only once.

– Program efficiency.

– Reduction of implementation complexity.

11

Programming by contract: example
• Complete specification of Explorer’s constructor:

/**

 * Create a new Explorer with the specified name,

 * initial location, annoyability, and tolerance.

 *

 * @require annoyability >= 0

 * tolerance >= 0

 * @ensure this.name().equals(name)

 * this.location().equals(location)

 * this.annoyability() == annoyability

 * this.tolerance() == tolerance

 */

public Explorer (String name, Room location,

 int annoyability, int tolerance)

12

Verifying preconditions

• The boolean expression is evaluated

– if true, statement has no effect.

– If false, statement raises an error condition stopping
execution of program displaying cause of error.

 Java’s assert statement can be used in verifying
 preconditions.

assert booleanExpression ;

13

Verifying preconditions
public Explorer (String name, Room location,

 int annoyability, int tolerance) {

 assert annoyability >= 0;

 assert tolerance >= 0;

 this.name = name;

 this.location = location;

 this.annoyability = annoyability;

 this.tolerance = tolerance;

}

14

Pre-conditions summary
• Preconditions must be satisfied by client

invoking method.

• Most often preconditions constrain values
that client can provide as arguments when
invoking method.

• Remember: if an argument is not constrained
by a precondition, method must be prepared
to accept any value of the specified type.

15

Example 1: constructor precondition
java.util.Date class

/**

 * Create a new Date.

 * Arguments day, month, year must represent

 * a legal calendar date. Year must be > 1752.

 */

public Date (int day, int month, int year)

public static boolean isLegalDate (

 int day, int month, int year)

 Arguments day, month, year represent

 a legal calendar date.

 Need to provide client a method to determine whether
 or not constructor arguments represent a legal date.
 Method is not a feature of a Date instance, but a utility
 of the Date class.

Example 2: no preconditions

• If we remove specification of returning a -1 if
item not found in list, need to have precondition
that item is in list.

• This puts an unreasonable burden on client.

 Server promises to fulfill a contract only if client satisfies
preconditions.

public int indexOf (Object item)

 The index of the first occurrence of the

 specified item on this List, or

 -1 if this List does not contain specified item.

16

Example 3: Valid indexes

• Assert statement used to verify preconditions.
• Two forms:

//Interchange list.get(i) and list.get(j)

// require 0 <= i, j < list.size() …

private <Element> void interchange (

 List<Element> list, int i, int j) {

 assert 0 <= i && i < list.size():

 "precondition: illegal i";

 assert 0 <= j && j < list.size():

 "precondition: illegal j";

 …

assert booleanExpression ;

assert booleanExpression : expression ;

17

18

Defensive programming

• Server validates all its arguments and notifies
client with an exception if an argument is invalid.

• This programming style does not clearly delineate
client and server responsibilities.

• Defensive programming results in

– multiple checks of same conditions.

– Code bloat

– Misuse of exceptions to detect normal rather than
exceptional conditions.

19

Postconditions

• Postcondition: condition that implementor promises
will be satisfied when method completes execution.

 Can be more precise : integer result is non-negative.

/**

 * The number of items counted.

 * @ensure this.currentCount() >= 0

 */

public int currentCount () { …

 Method currentCount in Counter is specified as

/**

 * The number of items counted.

 */

public int currentCount () { …

Postconditions

• We can use assert to check post-conditions

• Postconditions often too complex to verify with simple
conditions.

• Postconditions
– can be tricky to handle;
– often they involve comparing an object’s state after

method execution to the object’s state prior to execution.

• Including such checks depends on where we are in the
development process.

 20

Running program with assertions

• Assertions are disabled by default

• To enable them use the following JVM
argument:

java –ea mazeGame.game

21

Enable Assertions

Distributing your application with Java
WEB Start

• Allows to start your java application directly from the
Internet using WEB browser

• Unlike Java applets, Web Start applications do not run
inside the browser. However, by default they run in the
sandbox. Only signed applications can be configured to
have additional or even all permissions.

• Web Start has an advantage over applets in that it
overcomes many compatibility problems with
browsers' Java plugins and different JVM versions.

• On the other hand, Web Start programs are no longer
part of the web page. They are independent
applications that run in a separate thread

 22

How to deliver your app through Java
WEB start

• Go over your code and locate all places where
app is using external resources, such as
images, text files or sounds

• Add these external files directly to the
package folder of the classes that use these
resources (by dragging them into a package
folder)

• Change how you access these external
resources in your java classes

23

Step 1. Recode reading of all external
resources

import java.net.URL;

//to load image from file:
try
{
 URL url = this.getClass().getResource("star.png");
 BufferedImage bi = ImageIO.read(url);
}
catch (IOException e) { e.printStackTrace(); }

//to load any input stream
try
{
 InputStream url = this.getClass().getResourceAsStream("surfingalien.mid");
 Sequence Seq = MidiSystem.getSequence(url);
}
catch (IOException e) { e.printStackTrace(); }

24

Step 2. Generate jar file for your
project

• In Eclipse: Project -> export as jar file (non
executable jar). Include all resources which are
located in package directories

• Suppose we generated myproject.jar

25

Step 3. Generate marina.jnlp file
<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="http://csci.viu.ca/~barskym/OOP2012/test1">
 <information>
 <title>My project</title>
 <vendor>VIU CSCI 331 team</vendor>
 </information>
 <resources>
 <!-- Application Resources -->
 <j2se version="1.6+" href="http://java.sun.com/products/autodl/j2se"/>
 <jar href=“myproject.jar" main="true" />
 </resources>
 <application-desc
 name=“My project"
 main-class=“marinapackage.MainAppClass"
 width="800"
 height="600">
 </application-desc>
 <update check="background"/>
</jnlp>

26

Absolute path on
server where your
jar file is located

Name of
the
project jar
file

Define main class
which will start the
application

Step 4. Create simple html file with
Java WEB start link

<html>
 <head>
 <title> My project example</title>
 <meta charset="UTF-8" />
 </head>

 <body>
 <script src="http://www.java.com/js/deployJava.js"></script>
 <H1> Simple 2D animations </H1>

 My app
 </body>
</html>

27

Include deployJava
script

