
Polymorphism. Abstraction.
Interface

Lecture 8

Is-a vs. is-like-a relationship

• A test for inheritance is to determine whether you can state
the is-a relationship about the classes and have it make sense.

• There are times when you must add new interface elements
to a derived type, thus extending the interface.

• The new type can still be substituted for the base type, but
the substitution isn’t perfect because your new methods are
not accessible from the base type. This can be described as an
is-like-a relationship.

Is-like-a example 1/4

Thermostat

targetTemp: Integer
currentTemp: Integer
device: Cooling System

adjustTemperature()

Cooling System

cool()

Air Conditioner

cool()

Fan

cool()

void adjustTemperature()
{
 if (currentTemp>targetTemp)
 device.cool();
}

Is-like-a example 2/4

Thermostat

targetTemp: Integer
currentTemp: Integer
device: Cooling System

adjustTemperature()

Cooling System

cool()

Air Conditioner

cool()

Heat Pump

cool()
heat()

void adjustTemperature()
{
 if (currentTemp>targetTemp)
 device.cool();
}

Heat Pump is like a
Cooling System,
except it extends its
interface with
heat() method

Is-like-a example 3/4

Thermostat

targetTemp: Integer
currentTemp: Integer
device: Cooling System

adjustTemperature()

Cooling System

cool()

Air Conditioner

cool()

Heat Pump

cool()
heat()

void adjustTemperature()
{
 if (currentTemp>targetTemp)
 device.cool();
 else if(currentTemp<targetTemp)
 ???
}

Cooling System base class does
not have method heat()

Is-like-a example: fix to is-a

Thermostat

targetTemp: Integer
currentTemp: Integer
device: Temp Control System

adjustTemperature()

Temp Control System

cool()
heat()

Air Conditioner

cool()

Heat Pump

cool()
heat()

void adjustTemperature()
{
 if (currentTemp>targetTemp)
 device.cool();
 else if(currentTemp<targetTemp)
 device.heat();
}

heat() {}

Back to Animal Simulation program design
Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

Feline

roam()

Canine

roam()

makeNoise()
eat()

Tiger

makeNoise()
eat()

Lion

makeNoise()
eat()

Cat

makeNoise()
eat()

Wolf

makeNoise()
eat()

Hippo

makeNoise()
eat()

Dog

• No duplicate code
• Subclass-specific

methods are overriden
• Ready for polymorphic

programs

We know we can say:

Wolf w=new Wolf();

w

Wolf

A Wolf
reference to
a Wolf
object

These two are the same type

And we know we can say:

Animal a=new Wolf();

a

Animal

Animal
reference to
a Wolf
object

These two are NOT the same type

But here’s where it gets weird

Animal a=new Animal();

a

Animal

Animal
reference to
a Wolf
object

These two are the same type, but…
What does an Animal object look like?

?
Animal object

What does an Animal object look like?

• What are the instance variable values?

What shape, what color, size, number of legs?

• We need Animal for inheritance and polymorphism,
but we want to be able to make instances only of
more concrete objects, not Animal objects

Solution: abstract classes

Abstract class declaration

abstract class Canine extends Animal{

 public void roam() {…}

}

You cannot create a new instance of an abstract
class:

Canine c;

c=new Dog();

c=new Canine(); X

Abstract and concrete classes

• An abstract class has no use, no value, no purpose in life
unless it is extended

• An abstract class means the class must be extended to be
used

• A class that is not abstract (regular class) is called concrete

• A lot of abstract classes in Java GUI API: Component extended
by Jbutton, JTextArea etc.

Abstract methods

• We can mark methods as abstract

• An abstract method means the method must be
overriden by a subclass, to make a subclass concrete

• You make a method abstract if you can’t think of any
generic implementation which could be useful for all
subclasses

Abstract methods have no body

public abstract void eat();

• If you declare an abstract method,
you must mark the class abstract
as well

• You can mix abstract and non-
abstract methods in an abstract
class

Purpose of abstract methods

• Not for reusing code (there is no code)

• To define a protocol common to all subclasses – to be
used for polymorphism:

An abstract method says: all subclasses of this class
have this method

You must implement all abstract
methods

• The first concrete class in the inheritance tree
must implement all abstract methods

• You must create a non-abstract method in
your class with the same signature as an
abstract method. It can even be empty.

Abstract vs. Concrete

Concrete Sample class Abstract

Golf course simulation Tree Tree nursery application

House Architect application

Book

Oven

Game unit

Polymorphism in action

• List of Dogs
public class MyDogList {
 private Dog [] dogs = new Dog[5];
 private int nextIndex = 0;
 public void add(Dog d) {
 if (nextIndex < dogs.length) {
 dogs[nextIndex] = d;
 System.out.println(“Dog added at “ +
 nextIndex);
 nextIndex++;
 }
 }
}

MyDogList

Dog[] dogs
int nextIndex

add(Dog d)

Polymorphism in action
• Now we need to keep Cats too

public class MyAnimalList {

 private Animal[] animals = new Animal[5];

 private int nextIndex = 0;

 public void add(Animal a) {

 if (nextIndex < animals.length) {

 animals[nextIndex] = d;

 System.out.println(“Animal added at “ + nextIndex);

 nextIndex++;

 }

 }

}

public class AnimalTestDrive{

 public static void main (String[] args) {

 MyAnimalList list = new MyAnimalList();

 Dog a = new Dog();

 Cat c = new Cat();

 list.add(a);

 list.add(c);

 }

}

MyAnimalList

Animal[] animals
int nextIndex

add(Animal a)

Generic list

• What about non-animals? Why not to make list
generic to take anything?

• We want to change the type of the array and the
parameters of add() to something above Animal,
something more abstract than Animal

• But we don’t have a superclass for Animal

• Then again, maybe we do…

Object class

• Every class in Java extends class Object

• Class Object is the mother of all classes; it’s the
superclass of everything

• Without a common superclass there is no way for
the developers of Java to make useful libraries with
methods which can take you custom types … types
they never knew about when they wrote the library

• Implicitly:

public class Animal extends Object

So what’s in this ultra-super-megaclass
Object?

Methods of class Object:

• boolean equals(Object b)

• Class getClass()

• int hashCode()

• String toString()

• …

Is class Object abstract?

• Object is non-abstract class because it has method
implementations that all other classes can use out-of-
the-box, without having to override them

• However, you can and must override such methods as
equals(), toString() and hashCode() in order to make
your classes behave in a desirable manner

• Some of the methods (getClass()) cannot be overriden,
they are marked as final

• You can create an instance of class Object, but this is
very rare, and used mostly for thread synchronization

Why not to make all arguments and
return types of class Object?

• This defeats the type-safety provided by Java

• The only methods you allowed to call on
instances of class Object are the ones declared
in class Object

Object o=new Ferrari();

o.goFast() ;

 X

Method validity is based on the
reference type, not the object type

Object o=new Dog();

int i=o.hashCode();

o.bark() ; X

• You can cast it back to the Dog type in order to
invoke the methods of class Dog

((Dog)o).bark();

Each object contains all its
superclasses

Snowboard s=new Snowboard()

Object o=s;

Polymorphism means many forms

• You can treat a Snowboard as a Snowboard or as an
Object

Casting a reference back to its real
type

If (o instanceof Snowboard)

{

Snowboard s=(Snowboard) o;

}

Contract

• Each class exposes public methods including
methods of its superclass as a contract:

• The Dog class defines a contract:

– Everything in class Canine is part of this contract

– Everything in class Animal is part of this contract

– Everything in class Object is part of this contract

What if we need to change the
contract?

• We want to use the same animal classes for the
PetShop program

• How to add Pet behavior to some of the Animal
classes?

• Should we add some new methods to a Dog class?

• Maybe the same methods to a Cat class? (duplicate
code)

Add pet methods only to classes which can be pets
Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

Feline

roam()

Canine

roam()

makeNoise()
eat()

Tiger

makeNoise()
eat()

Lion

makeNoise()
eat()

Cat *

makeNoise()
eat()

Wolf

makeNoise()
eat()

Hippo

makeNoise()
eat()

Dog *

It looks that we need two superclasses at the top
Animal

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

Feline

roam()

Canine

roam()

makeNoise()
eat()

Tiger

makeNoise()
eat()

Lion

makeNoise()
eat()

Cat

makeNoise()
eat()

Wolf

makeNoise()
eat()

Hippo

makeNoise()
eat()

Dog

Pet

beFriendly()
play()

Multiple inheritance can be a really
bad thing

Cat

Pet

play()

Animal

play()

We need extra-rules
to deal with collisions

Java solution: Interface

• Gives polymorphic benefits of multiple inheritance

• In the interface class all the methods are abstract

• Each class which implements an interface must to
implement all the methods declared in the interface

public interface Pet {…}

public class Dog extends Canine implements Pet {…}

Importance of interfaces

• If you use interface as a type of arguments, you can
pass any class which implements this interface

• A class does not have to come from one inheritance
tree: another class can implement the same interface
and come from a completely different inheritance tree

• We can treat an object by the role it plays rather than
by the class type from which it was instantiated

• A class can implement multiple interfaces: play
different roles

public class Dog extends Animal implements Pet,
 Saveable, Paintable { ... }

When to use interfaces

• Make a normal class that does not extend anything
when your new class does not pass the IS-A test for any
other type

• Make a subclass (extend the class) only when you need
to make a more specific version of a superclass

• Use an abstract class when you want to define a
template for a group of subclasses, and you have at
least some code that all subclasses can use

• Use an interface when you want to define a role that
other classes can play regardless of where the classes
are in the inheritance tree

Partial method overriding
• If you want to use the code in a superclass’s method, but extend it:
abstract class Report {
 void runReport() {
 // set-up report
 }
 void printReport() {
 // generic printing
 }
}
class BuzzwordsReport extends Report {
 void runReport() {
 super.runReport();
 buzzwordCompliance();
 printReport();
 }
 void buzzwordCompliance() {...}
}

Bullet points I

• When you don’t want a class to be
instantiated – mark the class with abstract
keyword

• An abstract class may have both abstract and
non-abstract methods

• An abstract method has no body, only the
declaration

Bullet points II

• Every class in Java is either a direct or indirect
subclass of class Object

• Methods can be declared with Object
arguments and return types

• You can call only the methods which are in the
class used by reference variable

Bullet points III

• Multiple inheritance is not allowed in Java

• An interface is a 100% pure abstract class

• Your class can implement multiple interfaces

• A class that implements interface must
implement all interface methods, since all
interface methods are implicitly public and
abstract

