
Inheritance

Lecture 7

Reading: chapters 9,10

Similarities and Differences

CSCI331Mobile, Van, Convertible
• What do these three automobiles have in common?

– they’re all vehicles!
• all can move
• all have an engine
• all have doors
• all have one driver
• all hold a number of passengers

• What about these three vehicles is different?
– the sportscar:

• convertible top, 2 doors, moves really fast, holds small number of people

– the van:
• high top, 4 doors (two of which slide open), moves at moderate speed, holds large

number of people

– the CSCI331Mobile:
• normal top, 2 doors, moves slowly, holds moderate number of people

• Inheritance models “is a” relationships
– object “is an” other object if it can behave in the same way
– inheritance uses similarities and differences to model groups of related objects

• Where there’s inheritance, there’s an Inheritance Hierarchy of classes

– Mammal “is an” Animal
– Cat “is a” Mammal
– Transitive relationship: a Cat “is an” Animal too

• We can say:
– Reptile, Mammal and Fish “inherit from” Animal
– Dog, Cat, and Moose “inherit from” Mammal

Inheritance

 Animal

 Reptile Mammal Fish

 Cat Moose Dog

Inheriting Capabilities and Properties
• Subclass inherits all public capabilities of its superclass

– if Animals eat and sleep, then Reptiles, Mammals, and Fish
eat and sleep

– if Vehicles move, then SportsCars move!

• Subclass specializes its superclass
– by adding new methods, overriding existing methods, and defining

“abstract” methods declared by parent that have no code in them
– we’ll see these in a few slides!

• Superclass factors out capabilities common among its subclasses
– subclasses are defined by their differences from their superclass

• As a general pattern, subclasses:
– inherit public capabilities (methods)
– inherit private properties (instance variables)

• do not have direct access to them, only indirect access via inherited superclass methods that make
use of them (including accessors/mutators)

Superclasses and Subclasses
• Inheritance is a way of:

– organizing information
– grouping similar classes
– modeling similarities among classes
– creating a taxonomy of objects

• Animal is called superclass
– or base class or parent class
– in our car example, Vehicle is called superclass

• Fish is called subclass
– or derived class or child class
– in our car example, SportsCar is subclass

• Any class can be both at same time
– e.g., Mammal is superclass of Moose and subclass of Animal

• Can inherit from only one superclass in Java
– C++ allows a subclass to inherit from multiple superclasses, but this is prone

to errors

Deadly Diamond of Death

Digital Recorder

i: Integer

burn()

 ComboDrive

 DVDBurner

burn()

 CDBurner

burn()

What if i variable
is used by both,
and is set to two
different values?

Which burn()
 to call?

Inheritance, Even with Vehicles!

– a SportsCar “is a” Vehicle

– a CSCI331Mobile “is a” Vehicle

– you get the picture...

• We call this a tree diagram, with Vehicle as the
“root” and SportsCar, CSCI331Mobile,
Van as “leaves” (an upside-down tree)

Vehicle

 Van CSCI331Mobile SportsCar

Inheritance Example
• Student inheritance hierarchy:

– Student is base class

– VIUStudent is Student’s subclass

– CSCI331Student is subclass of VIUStudent

• Student has a capability (or method)

– study() which works by:
• going home, opening a book, and reading 50 pages.

 Student

VIUStudent

CSCI331Student

Inheritance Example (cont.)
• VIUStudent “is a” Student, so it inherits the study() method

– but it overrides the method by:
• going to the library, reviewing lectures, and doing an assignment

– note: it doesn’t have to override this method!

• Finally, the CSCI331Student also knows how to study() (it study()s the same way a
VIUStudent does)

– however, the CSCI331Student subclass adds two capabilities:
gitDown() and gitFunky()

public void gitDown() {

 // Code to party

}

public void gitFunky() {

 // Code to do awesome CSCI331 dance

}

• Each subclass is a specialization of its superclass

– Student knows how to study(), so all subclasses in
hierarchy know how to study()

– but the VIUStudent does not study() the same way a
Student does

– and the CSCI331Student has some capabilities that neither
Student nor VIUStudent have (gitDown() and
gitFunky())

Abstract behaviour

• Superclass is too general to declare all behaviors, so
each subclass adds its own behavior

• Superclass legislates an abstract behavior and therefore
delegates implementation to its subclasses

• Superclass specifies behavior, subclasses inherit and
implement behavior

Designing with Inheritance

Animal

makeNoise()
eat()
sleep()
Roam()

picture
food
hunger
boundaries
location

Animal simulation program

Lion Hippo Tiger Dog
Cat

Wolf

Instance variables would be
the same, but the behavior
different

Eating and making noise is
animal-specific

We decide to override eat()
and makeNoise()

Designing with Inheritance

Animal

makeNoise()
eat()
sleep()
Roam()

picture
food
hunger
boundaries
location

Animal simulation program

Lion Hippo Tiger Dog
Cat

Wolf

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

More inheritance opportunities

Animal

makeNoise()
eat()
sleep()
Roam()

picture
food
hunger
boundaries
location

Lion, Tiger and Cat may
have something in
common

Wolf and Dog are both
Canines. Maybe there is
something that both
classes can use

Lion Hippo Tiger Dog
Cat

Wolf

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

Final inheritance tree
Animal

makeNoise()
eat()
sleep()
Roam()

picture
food
hunger
boundaries
location

Felines move alone
Canines move in packs

Lion
Hippo

Tiger
Dog

Cat

Wolf

makeNoise()
eat() makeNoise()

eat()

makeNoise()
eat()

makeNoise()
eat() makeNoise()

eat()

makeNoise()
eat()

Feline

roam()

Canine

roam()

Which method is called?

• Make a new Wolf object Wolf w=new Wolf();

• Calls version in Wolf w.makeNoise();

• Calls version in Canine w.roam();

• Calls version in Wolf w.eat();

• Calls version in Animal w.sleep();

You are calling the most specific version of a
method that exists for this class

Why use inheritance

• Get rid of duplicate code by abstracting out
the common behavior.

• Modify in one place, and the change is
magically carried out to all subclasses

• Can add new subclasses easily, and they have
some methods and properties right away

More important
1. Inheritance guarantees that all classes grouped under a certain

supertype have all the methods that the superclass has:

We define a common protocol for a set of classes related through
inheritance

Class Animal establishes a common protocol for all Animal subtypes

 Animal

makeNoise()
eat()
sleep()
Roam()

We are telling the world that any Animal
can do this 4 things. That includes the
method arguments and return types

2. When you define a supertype, any subclass can be substituted
where the supertype is expected

This is called Polymorphism

Reference type and object type

Dog d=new Dog() ;

• Reference and object are of the same type

Animal a=new Dog();

• Reference and object are of the different type

• With polymorphism the reference type can be
a superclass of the actual object type

Polymorphic arrays

Animal[] animals = new Animal[5];
animals [0] = new Dog();
animals [1] = new Cat();
animals [2] = new Wolf();
animals [3] = new Hippo();
animals [4] = new Lion();

for (int i = 0; i < animals.length; i++) {
 animals[i].eat();
 animals[i].roam();
}

And every
object

does the
right thing

You can have polymorphic arguments
and return types

class Vet {

public void giveShot(Animal a) {

 // do horrible things to the Animal at

 // the other end of the ‘a’ parameter

 a.makeNoise();

 }

}

class PetOwner {

 public void start() {

 Vet v = new Vet();

 Dog d = new Dog();

 Hippo h = new Hippo();

 v.giveShot(d);

 v.giveShot(h);

 }

}

The Vet’s
getShot()
method can
take any Animal
you give it
 give it

each animal
makes a
different
noise

Is-a vs. has-a

• When one class inherits from another, we say
that subclasses extend the superclass.

• In order to test whether we need to use
inheritance or composition, apply is-a test

• Tub extends bathroom sounds reasonable
until you apply is-a test

True or False?

• Oven extends Kitchen
• Guitar extends Instrument
• Person extends Employee
• Ferrari extends Engine
• Hamster extends Pet
• Container extends Jar
• Metal extends Titanium
• Blonde extends Smart
• Beverage extends Martini

Hint: apply is a test

General guidelines for using
inheritance

• DO use inheritance if one class is a more specific
version of a superclass

• DO consider inheritance when you have behavior
(code) that is shared among multiple classes of
the same general type

• DO NOT use inheritance simply to reuse the code
(for example, printing code for Alarm and for
Piano) – create a Printer class that can be shared
via composition by different objects

• DO NOT use inheritance if the subclass and
superclass do not pass is-a test

