
Java syntax

Lecture 6

Comparing primitives

• To compare two primitives use ==

int a = 3;

byte b = 3;

if (a == b) // true

Comparing object references

• Use ==

Foo a = new Foo();

Foo b = new Foo();

Foo c = a;

if (a == b) // false

if (a == c) // true

if (b == c) // false

Comparing objects

• To compare objects use equals – you need to
implement a special method, which compares
the state of both objects, the fields that you think
are important

String s1=new String(“Fred”);

String s2=new String(“Fred”);

if(s1==s2) //false

if(s1.equals(s2)) //true

Java operators

• Assignment

• Equivalence

• Auto increment

• Boolean operators

• Short circuiting – lazy &&, || operators (can check that
an object is not null and then call methods of this
object in the same conditional expression)

• String concatenation

• No sizeof() operator

• Casting and promotion

Casting and promotion
• Can cast from any primitive value to any other

primitive value. There is no casting on boolean

• if you perform any mathematical or bitwise operations
on primitive data types that are smaller than an int
(that is, char, byte, or short), those values will be
promoted to int before performing the operations, and
the resulting value will be of type int. So if you want to
assign back into the smaller type, you must use a cast.

• In general, the largest data type in an expression is the
one that determines the size of the result of that
expression; if you multiply a float and a double, the
result will be double; if you add an int and a long, the
result will be long.

Flow control

• If, else, if else

• For, comma operator

• For each

• While

• Do while

• Break and continue

For each loop in Java

for (int cell : locationCells) {

}

For each element in locationCells array assign element to a
variable cell and perform the body of the loop with this variable

Avoiding common mistakes

while(x=5)

Would not
compile

Expects boolean data type, but x=5 is not boolean

Do … while

do { statement(s) } while (expression);

//password checking
boolean validPassword=false;
do
{
 String password=getUserPassword();
 if(database.isValid(password))
 validPassword = true;
}while (!validPasword)

Java versions

Slow.
Cute name and
logo. Fun to
use. Lots of
bugs. Applets
are the Big
Thing

A little faster.
More capable,
friendlier.
Becoming very
popular. Better
GUI libraries.

Much faster.
Can (sometimes) run at
native speeds. Serious,
powerful. Comes in 3
flavors: J2ME, J2SE, J2EE.
Becomes the language of
choice for enterprise
(WEB and mobile)
applications

More power
(known as “tiger”).
Easier to develop with.
Changes in language,
adding features
popular in other
languages

2004-2008

Java latest versions

• Java 6 (“Mustang”) (from 2006)
Dramatic performance improvements

The first release to offer a standardized framework for scripting languages.
Easier user input with System.console(). Buffer-oriented, non-blocking NIO
library. Compiler API. Swing double-buffering (eliminating the gray-area
effect). Improved JVM garbage collection algorithms.

• Java 7 (“Dolphin”) (from 2011)
Enhancements in the JVM to support Non-Java languages: multi-language
virtual machine. Strings in switch. Binary Integer literals (no bit manipulation
needed). Xrender graphic card support of 2D engines. Enhanced support of
Socket Direct Protocol

What we are using

• Textbook for Java 6 (3-rd edition)

• Lab – Java 6

Your Object-Oriented design toolbox

Concepts

Abstraction

Encapsulation

Object

Object class (type)

Properties

Methods

Association

Composition

Skills

UML diagrams

Class definition

Composition relationship

Association relationship

Your Java toolbox

Language Concepts

Variable

Primitives

Reference variables

Class and Instance

Object constructor

Instance variables and
 local variables

Arrays

Static variables and methods

Programming Skills

Using classes

Defining classes

Implementing classes

Setting association
 relationships

Manual tests

