Designing classes:
Methods and properties

Objects have state and behavior

e State: Instance variables, fields or properties
and their current values

e Behavior: methods

Method arguments and return values

 Each method may have >=0 parameters
(arguments)

 Each method may have only 1 return value

Java is pass by value
— this means pass by copy

int x=7; 1. Declare variable x,
assign value 7.

public void go (int z) | 2. Declare method go
with its own variable

for a method
parameter

3. Call method passing x
as an argument — the
bits are copied from x
toz

public void go)

Java is pass by value
— this means pass by copy

Change the value of z inside the method.
The value of x doesn’t change! The argument
passed to the z parameter was only a copy of x.

The method can’t change the bits that were in
the calling variable x.

N
o
S
S

public void go)

What happens with arguments-objects?

e Pass by value
 Value is bits inside the variable

e Bitsin the reference variable are the remote control
(address?) of an object.

* When they are copied into a method argument, we are
pointing to the same object, and thus we are changing the
same object

If we need to change int value

Pass a wrapper class

int c1, c2;

Integer oCounter1l=new Integer(cl);

Integer oCounter2=new Integer(c2);
incrementAllCounters(oCounter1, oCounter2)

cl1=oCounterl.intValue();
c2=oCounter2.intValue();

public void incrementAllCounters (Integer counterl, Integer counter2)

{

counterl.intValue++;
counter2.intValue++;

Passing this as an argument

class Person {
public void eat(Apple apple) {
Apple peeled = apple.getPeeled();
System.out.printin("Yummy");

/
} public class PassingThis {
public static void main(String[] args) {
class Peeler { new Person().eat(new Apple());
static Apple peel(Apple apple) { }
// ... remove peel }/* Output:
return apple; // Peeled Yummy
}
}
class Apple {

Apple getPeeled() { return Peeler.peel(this); }
}

Passing this to create an association

e Usually associations are done in the constructor

package Demos.Car;

/**

* This class models a CSCI331Mobile that knows about

* its City. Again, the instance variables,
* constructor, and other methods that we defined
* in earlier slides are elided.

*/
public class CSCI331Mobile {
private City _city;

public CS15Mobile (City myCity) ({
_city = myCity; // store association
// More code elided

}

}
Now the CSCI331Mobile can call any of City's public methods on

_city.

Syntax: City

package Demos.Car;

/**

* This class models a city where CSCI331Mobiles
* exist. Because the City contains the
* CSCI331Mobile, it can send the CSCI331Mobile the

* reference to an instance of itself.

*/
public class City {
private CSCI1331Mobile 331lmobile;

public City() {

_331mobile = new CSCI1331Mobile (this);
}
// .. Other methods of City elided
} // End of class City

Method overloading

public class Overloads {

« Method overloading is String uniquelD;
] public int addNums(int a, int b) {
having two methods return a + b;
with the same name }
but different lists of ,
public double addNums(double a, double b) {
parameters return a + b;
}
* Thereis no operator public void setUniquelD(String thelD) {
overloading in Java // lots of validation code, and then:
uniquelD = thelD;
}

public void setUniquelD(int ssNumber) {
String numString = “” + ssNumber;
setUniquelD(numString);

Overloading on return values

void f();

int f() { return 1; }

Calling overriden constructor from within constructor

public class Flower {
int _petalCount = 0;
String _name = "No name";
Flower(int petalCount) {
_petalCount = petalCount;
System.out.printin("Created flower "+ _name+" with "+_petalCount+" petals");

}
Flower(String name) {

this();

_hame = name;

System.out.printin("Created flower "+ _name+" with "+_petalCount+" petals");
}
Flower(String name, int petalCount) {

this (petalCount);

//! this(name); // Can’t call two!

this._name = name; // Another use of "this"

System.out.printin("Created flower "+ _name+" with "+_petalCount+" petals");
}
Flower() {

this ("Artificial flower", 2);

System.out.printin("Created flower "+ _name+" with "+_petalCount+" petals");
}

What is printed?

Flower f=new Flower(“Rose”);
Flower f=new Flower(5));
Flower f=new Flower(“Rosa glauca”, 5));

Rosa glauca

Method return values

* Only one return value
* |f need more —return array, return object

Java arrays: array of primitives

int [] nums;

reference
variable

Ve

Vo
__/
i nums

nums=new int [4]

nums What are the values of nums[0]? nums[1]?

The values are not initialized: junk

Java arrays: array of objects

Dog [] dogs;

Can we call methods of dogs[0]?
What’s missing?

Dogs!
We have an array of references but no actual Dog objects

Java arrays: array of objects

Dog [] dogs;

[

dogs[3]

dogs[1]

dogs=new Dog[4]
_— dogs[0]

b N e N

dogs[0]=new Dog;
dogs dogs[1]=new Dog;

Initialize each reference with new Dog object

Instance variables: initialization

If initial state is not set in the constructor, all
instance variables are automatically initialized to
their default values:

* Numeric primitives — zero
* Boolean primitive — false
e String and other objects - null

Local variables

* Local, stack-variables, scope-challenged variables
* Their life is short — inside the curly brackets of the method

* The objects created inside the method and referenced by a
local variable are destroyed when the method execution
ends

* Local variables are not automatically initialized, but their
initialization is enforced byga.camailer

Does not
class Foo { compile
public void go() {
int x;
. _ 3. % javac Foo.java
Intz=x+5; Foo.java:4: variable x might
} not have been initialized
} intz=x+3;

1 error /A

Variable lifespan

* The life of an object depends on the life of the
reference variable controlling it.

 But what is the lifespan of a reference
variable?

Variable scope

public class Student {

public void read() {
ints=42;
sleep();

public void sleep() {
s=17

Does not

compile

sleep() cannot see variable s. Since it
is not in its own stack frame, sleep()
does not know anything about it

()

sleep() J
read() @

\

{xnmr-rm\

Is s still alive when the program is
performing sleep() method?

Yes, when sleep() completes and read()
is on the top of the stack, it still can
access the value of s

When read() completes and is popped
off the stack, s is dead

Life and scope

public void gof) {
inty =3;
doStuff(y);
}

public void doStuff (int x) {
intz=x+24;

crazy();
// imagine more code here

}

public void crazy() {
char c = ‘a’;

}

) Q) (0]
o (@1 o (o]
ol | o o) o)
O O] V| Ol V| O | O
2| 2.2 22 22|
oSSl £ (ol
y X C

V -

What about reference variables?

An object becomes eligible for GC when its last live reference
disappears. If you do not release your objects, you will run out of
memory

3 ways to release your object

1. The reference goes out of scope, permanently
void go() {
Life z = new Life();
}

2. The reference is assigned another object
Life z = new Life();
z = new Life();

3. The reference is explicitly set to null
Life z = new Life();
z =null;

Exercise

public class GC {

public static GC doStuff() { How many total GC objects were
GC newGC = new G((); allocated in this program? 3
doStuff2(newGC);
return newGC; How many references? 6

}

Which of the following lines will

public static void main(String [] args) { release exactly one additional
GC gcl; object when inserted in place of
GC gc2 = new G((); star?
GC gc3 = new G({);

1. copyGC = null;

GCgc4 =gc3;
> 2. gc2 =null;
gcl = doStuff(); g

3. newGC =gc3;
* = 4. gcl=null;

// call more methods 5. newGC = null;
} 6. gc4 =null;
7. gec3=gc2;
public static void doStuff2(GC copyGC) { > 8. gcl=gc4;
GC localGC = copyGC; 9. gc3=null;

