
Designing classes:
Methods and properties

Lecture 5

Objects have state and behavior

• State: Instance variables, fields or properties
and their current values

• Behavior: methods

Method arguments and return values

• Each method may have >=0 parameters
(arguments)

• Each method may have only 1 return value

Java is pass by value
– this means pass by copy

public void go (int z)
{ }

x

int x=7;

z

1. Declare variable x,
assign value 7.

2. Declare method go
with its own variable
for a method
parameter

3. Call method passing x
as an argument – the
bits are copied from x
to z

public void go ()

go(x);

Java is pass by value
– this means pass by copy

x

z

Change the value of z inside the method.
The value of x doesn’t change! The argument
passed to the z parameter was only a copy of x.

The method can’t change the bits that were in
the calling variable x.

public void go ()

What happens with arguments-objects?

• Pass by value

• Value is bits inside the variable

• Bits in the reference variable are the remote control
(address?) of an object.

• When they are copied into a method argument, we are
pointing to the same object, and thus we are changing the
same object

If we need to change int value

Pass a wrapper class
int c1, c2;
Integer oCounter1=new Integer(c1);
Integer oCounter2=new Integer(c2);
incrementAllCounters(oCounter1, oCounter2)

c1=oCounter1.intValue();
c2=oCounter2.intValue();

public void incrementAllCounters (Integer counter1, Integer counter2)
{

counter1.intValue++;
counter2.intValue++;

}

Passing this as an argument
class Person {
 public void eat(Apple apple) {
 Apple peeled = apple.getPeeled();
 System.out.println("Yummy");
 }
}

class Peeler {
 static Apple peel(Apple apple) {
 // ... remove peel
 return apple; // Peeled
 }
}

class Apple {
 Apple getPeeled() { return Peeler.peel(this); }
}

public class PassingThis {
public static void main(String[] args) {
 new Person().eat(new Apple());
 }
} /* Output:
Yummy

Passing this to create an association

• Usually associations are done in the constructor
package Demos.Car;

/**

 * This class models a CSCI331Mobile that knows about

 * its City. Again, the instance variables,

 * constructor, and other methods that we defined

 * in earlier slides are elided.

 */

public class CSCI331Mobile {

 private City _city;

 public CS15Mobile(City myCity) {

 _city = myCity; // store association

 // More code elided

 }

}

Now the CSCI331Mobile can call any of City's public methods on _city.

Syntax: City
package Demos.Car;

/**

 * This class models a city where CSCI331Mobiles

 * exist. Because the City contains the

 * CSCI331Mobile, it can send the CSCI331Mobile the

 * reference to an instance of itself.

 */

public class City {

 private CSCI1331Mobile _331mobile;

 public City() {

 _331mobile = new CSCI1331Mobile (this);

 }

 // … Other methods of City elided

} // End of class City

Method overloading

• Method overloading is
having two methods
with the same name
but different lists of
parameters

• There is no operator
overloading in Java

public class Overloads {
String uniqueID;
public int addNums(int a, int b) {
 return a + b;
}

public double addNums(double a, double b) {
 return a + b;
}

public void setUniqueID(String theID) {

 // lots of validation code, and then:
 uniqueID = theID;
 }
 public void setUniqueID(int ssNumber) {
 String numString = “” + ssNumber;
 setUniqueID(numString);
 }
}

Overloading on return values

void f();

int f() { return 1; }

Illegal

Calling overriden constructor from within constructor
public class Flower {

 int _petalCount = 0;

 String _name = "No name";

Flower(int petalCount) {

 _petalCount = petalCount;

 System.out.println("Created flower "+ _name+" with "+_petalCount+" petals");

}

Flower(String name) {

 this();

 _name = name;

 System.out.println("Created flower "+ _name+" with "+_petalCount+" petals");

}

Flower(String name, int petalCount) {

 this (petalCount);

 //! this(name); // Can’t call two!

 this._name = name; // Another use of "this"

 System.out.println("Created flower "+ _name+" with "+_petalCount+" petals");

}

Flower() {

 this ("Artificial flower", 2);

 System.out.println("Created flower "+ _name+" with "+_petalCount+" petals");

}

}

What is printed?

Flower f=new Flower(“Rose”);

Flower f=new Flower(5));

Flower f=new Flower(“Rosa glauca”, 5));

Rosa glauca

Method return values

• Only one return value

• If need more – return array, return object

Java arrays: array of primitives
int [] nums;

nums

nums=new int [4]

nums

nums [0] nums [1] nums [2] nums [3]

What are the values of nums[0]? nums[1]?

The values are not initialized: junk

Object
reference
variable

heap

Java arrays: array of objects
Dog [] dogs;

dogs

dogs=new Dog[4]

dogs

dogs[0] dogs[1] dogs[2] dogs[3]

Can we call methods of dogs[0]?
What’s missing?

Dogs!
We have an array of references but no actual Dog objects

Java arrays: array of objects
Dog [] dogs;

dogs

dogs=new Dog[4]

dogs

dogs[0] dogs[1] dogs[2] dogs[3]

Initialize each reference with new Dog object

dogs[0]=new Dog;
dogs[1]=new Dog;

Dog
object

Dog
object

Instance variables: initialization

If initial state is not set in the constructor, all
instance variables are automatically initialized to
their default values:

• Numeric primitives – zero

• Boolean primitive – false

• String and other objects - null

Local variables
• Local, stack-variables, scope-challenged variables
• Their life is short – inside the curly brackets of the method
• The objects created inside the method and referenced by a

local variable are destroyed when the method execution
ends

• Local variables are not automatically initialized, but their
initialization is enforced by a compiler

class Foo {
 public void go() {
 int x;
 int z = x + 3;
 }
}

Does not
compile

% javac Foo.java
Foo.java:4: variable x might
not have been initialized
int z = x + 3;
1 error ^

Variable lifespan

• The life of an object depends on the life of the
reference variable controlling it.

• But what is the lifespan of a reference
variable?

Variable scope

public class Student {
 public void read() {
 int s = 42;
 sleep();
 }

 public void sleep() {
 s = 7;
 }
}

read()

sleep()

s

sleep() cannot see variable s. Since it
is not in its own stack frame, sleep()
does not know anything about it

Is s still alive when the program is
performing sleep() method?

Yes, when sleep() completes and read()
is on the top of the stack, it still can
access the value of s

When read() completes and is popped
off the stack, s is dead

Does not
compile

s
t
a
c
k

Life and scope

public void go() {
 int y = 3;
 doStuff(y);
}

public void doStuff (int x) {
 int z = x + 24;
 crazy();
 // imagine more code here
}

public void crazy() {
 char c = ‘a’;
}

go()

doStuff()

y

go() y

z x

doStuff()

go() y

z x

crazy() c

al
iv

e

In
 s

co
p

e

al
iv

e

In
 s

co
p

e

al
iv

e

In
 s

co
p

e

al
iv

e

In
 s

co
p

e

y x z c

v v - - - - - -

v - v v v v

v - v - v - v v

What about reference variables?
An object becomes eligible for GC when its last live reference
disappears. If you do not release your objects, you will run out of
memory
3 ways to release your object
1. The reference goes out of scope, permanently

void go() {
 Life z = new Life();
}

2. The reference is assigned another object

Life z = new Life();
z = new Life();

3. The reference is explicitly set to null

Life z = new Life();
z = null;

Exercise
public class GC {

 public static GC doStuff() {

 GC newGC = new GC();

 doStuff2(newGC);

 return newGC;

 }

 public static void main(String [] args) {

 GC gc1;

 GC gc2 = new GC();

 GC gc3 = new GC();

 GC gc4 = gc3;

 gc1 = doStuff();

 // call more methods

 }

public static void doStuff2(GC copyGC) {

 GC localGC = copyGC;

 }

}

How many total GC objects were
allocated in this program?

How many references?

Which of the following lines will
release exactly one additional
object when inserted in place of
star?

1. copyGC = null;
2. gc2 = null;
3. newGC = gc3;
4. gc1 = null;
5. newGC = null;
6. gc4 = null;
7. gc3 = gc2;
8. gc1 = gc4;
9. gc3 = null;

3

6

