MAKING OBJECTS

Views of a Class

Defining Your Own Class
Declaring Instance Variables
Declaring Methods

Sending Messages

Example: The Car

* We get a new car for the semester: the CSCI331Mobile!

* Being the object-oriented people, we think of the CSCI331Mobile
as an object with properties and capabilities

 We will create a class to model the CSCI331Mobile and then make
an instance of that class

Specifications of the CSCI331Mobile

We come up with the following basic (ok, ridiculously simple)
specification for the CSCI331Mobile:

— it should have an engine and wheels to move

— it should have doors so people can get in and out
— it should be able to move forward and backward
— it should be able to turn left and right

What are the CSCI331Mobile’s properties?

— engine, wheels, doors

What are the CSCI331Mobile’s capabilities?

— move forward, move backward, turn left, turn right

— don’t forget the constructor — all objects have the ability to construct themselves
(when sent a message to do so by another object)

What would this look like in Java?

— remember, properties are represented by instance variables
— capabilities are represented by methods

Simple Syntax for CSCI331Mobile

Note: The point of this is to show an outline of what a generic class definition looks like. Some
functionality has been elided with
// comments.

Three parts to class definition:
declaration, list of properties, list of methods (capabilities)

package Demos.Car;
/**
* This class models a vehicle that
* can move and turn.
*/
public class CSCI331Mobile { // declare class

// start class definition by declaring

// instance variables

private Engine _engine;

private Door _driverDoor,
_passengerDoor;

private Wheel frontDriverWheel,
_rearDriverWheel,
_frontPassengerWheel,
_rearPassengerWheel;

public CSCI331Mobile() { // declare constructor

Constructor for CSCI331Mobile

Note: The point of this is to show an outline of what a generic class definition looks like. Some
functionality has been elided with
// comments.

Three parts to class definition:
declaration, list of properties, list of capabilities

package Demos.Car;
/**
* This class models a vehicle that
* can move and turn.
*/
public class CSCI331Mobile { // declare class

public CSCI331Mobile() { // declare constructor

// construct the component objects
_engine = new Engine();

_driverDoor = new Door();
_passengerDoor = new Door() ;
_frontDriverWheel = new Wheel();
_rearDriverWheel = new Wheel();
_frontPassengerWheel = new Wheel() ;
_rearPassengerWheel = new Wheel() ;

} // end constructor for CSCI331Mobile

Methods for CSCI331Mobile (cont.)

// declare and define methods

public void moveForward () ({
// code to move CSCI331Mobile forward

}

public void moveBackward() {
// code to move CSCI331Mobile backward

}

public void turnLeft () {
// code to turn CSCI331Mobile left

}

Object capabilities (methods)

public void turnRight () ({
// code to turn CSCI331Mobile right

s

} // end of class CSCI331Mobile

CSCI331Mobile Syntax Explained (1 of 5)

package Demos.Car;

— package keyword tells Java that this class should be part of a package
— in this case, package is Demos .Car

/* ... */

— everything between /* and */ is a block comment
 useful for explaining specifics of classes
* the compiler ignores comments

« comment to make code more readable for ourselves and the users of the class
/**

* This class models a vehicle that
* can move and turn.

*/
— comment before class definition is called a header comment
» appears at top of a class
« explains purpose of a class

public class CSCI331Mobile {

— declares that we are about to create a class named CSCI331Mobile
— public indicates that any other object can create an instance of this class

CSCI331Mobile Syntax Explained (2 of 5)

e Everything associated with a class must appear within curly braces!

» all instance variables and methods;

* no code may appear outside curly braces: { }

* Inline Comments
— everything on the same line after two forward slashes // is an inline comment
— describes important features in code

private Engine _engine;
— declares an instance variable named engine of type Engine

— reserved word private
* indicates that instance variable will be available only to methods within this class
* other objects do not have access to _engine
* thus, CSCI331Mobile “encapsulates” its engine

— remember, properties can be objects themselves
* every object must be an instance of some class
* the class of an instance variable is called its type which determines what messages
can be sent to this property

CSCI331Mobile Syntax Explained (3 of 5)

— name of instance variable is _engine

o ”

* (CSCI331 convention: prefix all instance variables with an underscore:

rivate Door riverDoor
te D _d D ,
_passengerDoor;

— we can declare multiple reference variables of the same type by separating
them with commas

— driverDoor and passengerDoor are both instance variables of type
Door

— NOTE: these instance variables are not pointing to any objects yet!

public CSCI331Mobile () {

— constructor for class CSCI331Mobile

— remember: constructor is first message sent to a newly created object
— must have the same identifier (name) as its class

— () makes it a method

CSCI331Mobile Syntax Explained (4 of 5)
_engine = new Engine();
— the most common use of constructors is to initialize instance variables

e j.e., construct its initial state
* that’s just what we’re doing here!

— note: Constructor CSCI331Mobile () refers directly to instance variable
_engine

 all methods, including constructor, have direct access to all of their class’ instance
variables

— the rest of the instance variables are initialized in the same way

CSCI331Mobile Syntax Explained (5 of 5)

public void moveForward() {

— declares method named moveForward

— reserved word public indicates this method is part
of the class’ public interface

* thus, any other object that knows about an instance of this class can send that
instance a moveForward message (“call moveForward on that instance”)

— reserved word void indicates that this method does not return a result when
called
* some methods return values to the object which called the method
» constructor declaration does not include
return value (because constructors always return a new object instance!)
* more on return values next lecture

— moveForward is name of method
* (CSCI331 convention: method names start with lowercase letter, and all following

words in method name are capitalized

— anything inside curly braces { } is part of method definition’s body

CSCI331Mobile

* That’s it for basic skeleton of class CSCI331Mobile!

* Now you know how to write a class with properties (instance
variables) and capabilities (methods).

* In a few weeks, you would be able to write the full

CSCI331Mobile class!

— you would be able to fully define methods
— you would add a few more instance variables and change methods a little

— but basic structure will be the same!

* Next we look at the representation of objects’ three types of

properties. These are:

— components
— associations with other objects

— attributes

Object Relationships and Diagrams

In our description, we said the CSCI331Mobile had an engine,

doors, and wheels; these are its components.

We say that the CSCI331Mobile is composed of its engine,

doors, and wheels.

Containment is when one class is a component of another.

How do you determine containment?

— class CSCI331Mobile has aninstance variable of type Engine
— class CSCI331Mobile creates an instance of type Engine

— therefore, CSCI331Mobile contains an Engine

How do we diagram containment?
[Demos.Car.CSCI331Mobile

I Demos.Car.Engine

_ —
| _engine

class box for CSCI331Mobile

Diagramming covered in the next lecture

class box for Engine

Let’s say we have a (very self-aware) City object.

City contains and therefore constructs

— parks

— schools

— streets

— cars, e.g., CSCI331Mobiles (hey, why not?)

Therefore, City can call methods on
— parks
— schools

— streets
— CSCI331Mobiles

But, this relationship is not symmetric!

e Park, School, Street and CSCI331Mobile classes cannot
create new cities, but they may need to know about some

properties of the city, for example to avoid collision of a car with
the building

* Let’s focus on our CSCI331Mobile: how can we provide
CSCI331Mobile with accessto City?

The Association Relationship

* Answer: Associate the CSCI331Mobile withits City

« How do you determine association relationship?
— we’ll add to class CSCI331Mobile a reference variable of type City
— since class CSCI331Mobile doesn’t create an instance of type City, City
will not be contained by CSCI331Mobile
— we say: class CSCI331Mobile “knows about” City
— tune in next time to see how to set up an association (“knows about”)
relationship in Java

« How do we diagram association?

Demos.Car.CSCI331Mobile Demos.Car.City

A 4

_City

Attributes

The CSCI331Mobile has certain attributes

color, size, position, etc.

Attributes are properties that describe the CSCI331Mobile

we’ll add to class CSCI331Mobile an instance variable of type Color
CSCI331Mobile is described by its Color

this is different from an “is composed of”’ relationship

class CSCI331Mobile doesn’t contain its Color, nor is it associated with it

we say: Color is an attribute of class CSCI331Mobile

class CSCI331Mobile may setits own Color, or another class may call a method on
ittosetits Color

the actual color of the CSCI331Mobile is an attribute, but it is also an instance of the
Color class

e all instance variables are instances!

How do we diagram an attribute?

Demos.Car.CSCI331Mobile

Color _color

Class Box

e Arectangle is drawn to represent an individual class schematically

— at top is the class name
— next section lists properties of class (instance variable names are optional)
— below properties, names of class capabilities

* note that constructor is assumed and is not listed under capabilities

e Example of class CSCI331Mobile with the added properties just
discussed:

CSCI1331Mobile

Engine _engine

Door _driverDoor, passengerDoor

Wheel _frontDriverWheel, _rearDriverWheel,
_frontPassengerWheel, _rearPassengerWheel

City _city

Color _color

moveForward
moveBackward
turnLeft
turnRight

Class Diagrams

e A class diagram shows how classes relate to other classes (as shown

briefly on previous slides)

— rectangles represent classes
— relationships between classes are shown with

lines

— Association and containment properties have their names with reference to

class boxes representing their type

— attributes have type and identifier (but don’t show references)

CSCI331Mobile

_City
_engine
Color color

knows about

—

moveForward
moveBackward

turnLeft
’rllrnDighf

Note: Doors and Wheels
have been elided for clarity

contains

Lnaine

City

Note: Properties and
Capabilities of City and
Engine have been elided for
clarity

Packages and Accessing Classes

CSCI331Mobile s in package Demos

It is in its own sub-package
— so its qualified (complete) name is: Demos .Car.CSCI331Mobile

— qualified name of a class includes names of all packages it belongs to (e.g.,
Demos and its sub-package Car)

To access a class, you can always refer to it by its qualified name

But if class you want to access is in the same package as the current

class, you can omit the package name

— Engine isin package Demos .Car

— package Demos . Car at the top of CSCI331Mobile class definition makes
CSCI331Mobile part of the Demos .Car package

— therefore, CSCI331Mobile can refer to Demos.Car.Engine as, simply,
Engine

Working With Variables

e Remember CSCI331Mobile? Creating an instance variable was

done in two parts
1. declaration: private Engine _engine;

2. initialization: _engine = new Engine();

* What is value of engine before step 2? What would happen if
step 2 were omitted?

 Java gives all reference variables a default value of null
— i.e., it has no useful value
— null is another reserved word in Java
— means a non-existent memory address

Uninitialized Variables and null

If you forget to give your reference variables initial values, Java VM

will reward you with a runtime error in the form of a
NullPointerException

— runtime errors are problems that occur while your program is running

— i.e., your program compiled successfully, but it does not execute successfully

— for now, when runtime errors occur, your program is usually stopped by Java
VM

NullPointerException

— if you get such an error, make sure you have initialized all of your object’s

instance variables!
— most common occurrence of a NullPointerException is trying to send a

message to an uninitialized variable

WATCH OUT!

Working With Methods

 We know how to declare methods, but how do we call them?
How can we send messages between objects?

* Syntax is: <variableName>.<methodName> () ;

public class City {
private CSCI331Mobile 15mobile;

public City () {
_mobile = new CSCI331Mobile() ;
_mobile.moveForward() ;

* Sending a message (calling moxeForward on mobile) causes

the method’s code to be execute
« mobile.moveForward() ; isa methdd call
¢ mobileis the message’s receiver (the
instance being told to move)
dot (“.”) separates receiver from method name
* moveForward is the name of message to be sent
() denotes parameters sent to the message

this keyword (1 of 2)

 What if we want one method in a class to call another method in
the same class?
— say we want the CSCI331Mobile to have a turnAround () method

— want turnAround () method to call CSCI331Mobile’s own
turnLeft () or turnRight () method twice

 In order for current instance to be receiver of message, we need a
way to refer to it

 Reserved word this is shorthand for “this instance”

— this allows an instance to send a message to itself

this keyword (2 of 2)

« Example of using this to call a method on the current instance of
the class:

public void turnAround() {
this.turnLeft () ;
this.turnLeft () ;

}

this. turnlLeft () ;

— tells current class to execute code in its turnLeft () method
— since calling your own methods is common, using this is optional but it

makes your code clearer
— this.turnLeft () and turnlLeft ()}do same thing

‘-._-~

public void turnAround() { may be shorter, but not as clear
turnleft () ;
turnleft () ;

Example: Driving Around Victoria

* Imagine a “world” where the CSCI331Mobile moves only along
the roads defined by a regular grid:

— simplified city map: the streets of Victoria are all the same length and go only

horizontally and vertically (also, they are all 2-way)
— CSCI331Mobile can move forward in the direction that it is facing and can

turn 90 degrees left or right
— can move only one block at a time

Example: Driving Around Victoria

 How do we get CSCI331Mobile to a movie theatre (corner of
Yates and Blanchard) and back, given:

— CSCI331Mobile starts at corner of Pandora and Government facing north
(initial conditions)

Pandora ‘

Johnson

Yates ’
e
o

e}

= " =
S © < ©
()] oT1] o ©
> S c (¢]
o (o) < >
G o [~ @]

We’re Done!

* It’s that simple!

 Now you know how to create and use a class

e Next time: Customizing methods and setting up associations
between objects!

