
MAKING OBJECTS

• Views of a Class

• Defining Your Own Class

• Declaring Instance Variables

• Declaring Methods

• Sending Messages

Example: The Car

• We get a new car for the semester: the CSCI331Mobile!

• Being the object-oriented people, we think of the CSCI331Mobile
as an object with properties and capabilities

• We will create a class to model the CSCI331Mobile and then make
an instance of that class

Specifications of the CSCI331Mobile

• We come up with the following basic (ok, ridiculously simple)
specification for the CSCI331Mobile:
– it should have an engine and wheels to move
– it should have doors so people can get in and out
– it should be able to move forward and backward
– it should be able to turn left and right

• What are the CSCI331Mobile’s properties?
– engine, wheels, doors

• What are the CSCI331Mobile’s capabilities?
– move forward, move backward, turn left, turn right
– don’t forget the constructor — all objects have the ability to construct themselves

(when sent a message to do so by another object)

• What would this look like in Java?
– remember, properties are represented by instance variables
– capabilities are represented by methods

• Let’s see...

Simple Syntax for CSCI331Mobile

Note: The point of this is to show an outline of what a generic class definition looks like. Some
functionality has been elided with
// comments.

Three parts to class definition:
• declaration, list of properties, list of methods (capabilities)

package Demos.Car;

/**

 * This class models a vehicle that

 * can move and turn.

 */

public class CSCI331Mobile { // declare class

 // start class definition by declaring

 // instance variables

 private Engine _engine;

 private Door _driverDoor,

 _passengerDoor;

 private Wheel _frontDriverWheel,

 _rearDriverWheel,

 _frontPassengerWheel,

 _rearPassengerWheel;

 public CSCI331Mobile() { // declare constructor

Constructor for CSCI331Mobile

Note: The point of this is to show an outline of what a generic class definition looks like. Some
functionality has been elided with
// comments.

Three parts to class definition:
• declaration, list of properties, list of capabilities

package Demos.Car;

/**

 * This class models a vehicle that

 * can move and turn.

 */

public class CSCI331Mobile { // declare class

 public CSCI331Mobile() { // declare constructor

 // construct the component objects

 _engine = new Engine();

 _driverDoor = new Door();

 _passengerDoor = new Door();

 _frontDriverWheel = new Wheel();

 _rearDriverWheel = new Wheel();

 _frontPassengerWheel = new Wheel();

 _rearPassengerWheel = new Wheel();

 } // end constructor for CSCI331Mobile

Methods for CSCI331Mobile (cont.)

 // declare and define methods

 public void moveForward() {

 // code to move CSCI331Mobile forward

 }

 public void moveBackward() {

 // code to move CSCI331Mobile backward

 }

 public void turnLeft() {

 // code to turn CSCI331Mobile left

 }

 public void turnRight() {

 // code to turn CSCI331Mobile right

 }

} // end of class CSCI331Mobile

O
b

je
ct

 c
ap

ab
ili

ti
es

 (
m

et
h

o
d

s)

CSCI331Mobile Syntax Explained (1 of 5)

package Demos.Car;

– package keyword tells Java that this class should be part of a package
– in this case, package is Demos.Car

/* ... */

– everything between /* and */ is a block comment
• useful for explaining specifics of classes

• the compiler ignores comments

• comment to make code more readable for ourselves and the users of the class
/**

 * This class models a vehicle that

 * can move and turn.

 */

– comment before class definition is called a header comment
• appears at top of a class

• explains purpose of a class

public class CSCI331Mobile {

– declares that we are about to create a class named CSCI331Mobile

– public indicates that any other object can create an instance of this class

CSCI331Mobile Syntax Explained (2 of 5)

• Everything associated with a class must appear within curly braces!

• all instance variables and methods;

• no code may appear outside curly braces: { }

• Inline Comments
– everything on the same line after two forward slashes // is an inline comment
– describes important features in code

private Engine _engine;

– declares an instance variable named _engine of type Engine

– reserved word private
• indicates that instance variable will be available only to methods within this class
• other objects do not have access to _engine
• thus, CSCI331Mobile “encapsulates” its _engine

– remember, properties can be objects themselves
• every object must be an instance of some class
• the class of an instance variable is called its type which determines what messages

can be sent to this property

 CSCI331Mobile Syntax Explained (3 of 5)

– name of instance variable is _engine

• CSCI331 convention: prefix all instance variables with an underscore: “_”

private Door _driverDoor,

 _passengerDoor;

– we can declare multiple reference variables of the same type by separating
them with commas

– _driverDoor and _passengerDoor are both instance variables of type
Door

– NOTE: these instance variables are not pointing to any objects yet!

public CSCI331Mobile() {

– constructor for class CSCI331Mobile
– remember: constructor is first message sent to a newly created object
– must have the same identifier (name) as its class
– () makes it a method

CSCI331Mobile Syntax Explained (4 of 5)

 _engine = new Engine();

– the most common use of constructors is to initialize instance variables
• i.e., construct its initial state

• that’s just what we’re doing here!

– note: Constructor CSCI331Mobile() refers directly to instance variable
_engine

• all methods, including constructor, have direct access to all of their class’ instance
variables

– the rest of the instance variables are initialized in the same way

CSCI331Mobile Syntax Explained (5 of 5)

public void moveForward() {

– declares method named moveForward

– reserved word public indicates this method is part
 of the class’ public interface

• thus, any other object that knows about an instance of this class can send that
instance a moveForward message (“call moveForward on that instance”)

– reserved word void indicates that this method does not return a result when

called
• some methods return values to the object which called the method

• constructor declaration does not include

 return value (because constructors always return a new object instance!)

• more on return values next lecture

– moveForward is name of method

• CSCI331 convention: method names start with lowercase letter, and all following
words in method name are capitalized

– anything inside curly braces { } is part of method definition’s body

CSCI331Mobile

• That’s it for basic skeleton of class CSCI331Mobile!

• Now you know how to write a class with properties (instance
variables) and capabilities (methods).

• In a few weeks, you would be able to write the full
CSCI331Mobile class!
– you would be able to fully define methods
– you would add a few more instance variables and change methods a little
– but basic structure will be the same!

• Next we look at the representation of objects’ three types of
properties. These are:
– components
– associations with other objects
– attributes

Object Relationships and Diagrams

• In our description, we said the CSCI331Mobile had an engine,
doors, and wheels; these are its components.

• We say that the CSCI331Mobile is composed of its engine,
doors, and wheels.

• Containment is when one class is a component of another.

• How do you determine containment?
– class CSCI331Mobile has an instance variable of type Engine
– class CSCI331Mobile creates an instance of type Engine
– therefore, CSCI331Mobile contains an Engine

• How do we diagram containment?

• Diagramming covered in the next lecture

Demos.Car.Engine
Demos.Car.CSCI331Mobile

_engine

class box for CSCI331Mobile
class box for Engine

• Let’s say we have a (very self-aware) City object.

• City contains and therefore constructs
– parks
– schools
– streets
– cars, e.g., CSCI331Mobiles (hey, why not?)

• Therefore, City can call methods on
– parks
– schools
– streets
– CSCI331Mobiles

• But, this relationship is not symmetric!

• Park, School, Street and CSCI331Mobile classes cannot
create new cities, but they may need to know about some
properties of the city, for example to avoid collision of a car with
the building

• Let’s focus on our CSCI331Mobile: how can we provide
CSCI331Mobile with access to City?

The Association Relationship

• Answer: Associate the CSCI331Mobile with its City

• How do you determine association relationship?
– we’ll add to class CSCI331Mobile a reference variable of type City
– since class CSCI331Mobile doesn’t create an instance of type City, City

will not be contained by CSCI331Mobile
– we say: class CSCI331Mobile “knows about” City
– tune in next time to see how to set up an association (“knows about”)

relationship in Java

• How do we diagram association?

Demos.Car.CSCI331Mobile

_city

Demos.Car.City

Attributes

• The CSCI331Mobile has certain attributes
– color, size, position, etc.

• Attributes are properties that describe the CSCI331Mobile
– we’ll add to class CSCI331Mobile an instance variable of type Color
– CSCI331Mobile is described by its Color

– this is different from an “is composed of” relationship
– class CSCI331Mobile doesn’t contain its Color, nor is it associated with it
– we say: Color is an attribute of class CSCI331Mobile
– class CSCI331Mobile may set its own Color, or another class may call a method on

it to set its Color
– the actual color of the CSCI331Mobile is an attribute, but it is also an instance of the
Color class

• all instance variables are instances!

• How do we diagram an attribute?

– because attributes don’t have full weight of other object relationships, in CSCI331 we list

their type and name below class, without an arrow for reference

Demos.Car.CSCI331Mobile

Color _color

• A rectangle is drawn to represent an individual class schematically
– at top is the class name
– next section lists properties of class (instance variable names are optional)
– below properties, names of class capabilities

• note that constructor is assumed and is not listed under capabilities

• Example of class CSCI331Mobile with the added properties just
discussed:

CSCI331Mobile

Class Box

Engine _engine

Door _driverDoor, _passengerDoor

Wheel _frontDriverWheel, _rearDriverWheel,

 _frontPassengerWheel, _rearPassengerWheel

City _city

Color _color

moveForward

moveBackward

turnLeft

turnRight

Class Diagrams

• A class diagram shows how classes relate to other classes (as shown
briefly on previous slides)

– rectangles represent classes

– relationships between classes are shown with

 lines

– Association and containment properties have their names with reference to

class boxes representing their type

– attributes have type and identifier (but don’t show references)

 CSCI331Mobile

_city

_engine

Color _color

moveForward

moveBackward

turnLeft

turnRight

City

knows about

Engine

contains

Note: Properties and
Capabilities of City and
Engine have been elided for
clarity

Note: Doors and Wheels
have been elided for clarity

Packages and Accessing Classes

• CSCI331Mobile is in package Demos

• It is in its own sub-package
– so its qualified (complete) name is: Demos.Car.CSCI331Mobile
– qualified name of a class includes names of all packages it belongs to (e.g.,
Demos and its sub-package Car)

• To access a class, you can always refer to it by its qualified name

• But if class you want to access is in the same package as the current
class, you can omit the package name
– Engine is in package Demos.Car
– package Demos.Car at the top of CSCI331Mobile class definition makes
CSCI331Mobile part of the Demos.Car package

– therefore, CSCI331Mobile can refer to Demos.Car.Engine as, simply,
Engine

Working With Variables

• Remember CSCI331Mobile? Creating an instance variable was
done in two parts
1. declaration: private Engine _engine;

2. initialization: _engine = new Engine();

• What is value of _engine before step 2? What would happen if
step 2 were omitted?

• Java gives all reference variables a default value of null
– i.e., it has no useful value

– null is another reserved word in Java

– means a non-existent memory address

Uninitialized Variables and null

• If you forget to give your reference variables initial values, Java VM
will reward you with a runtime error in the form of a

– runtime errors are problems that occur while your program is running
– i.e., your program compiled successfully, but it does not execute successfully
– for now, when runtime errors occur, your program is usually stopped by Java

VM

• NullPointerException

– if you get such an error, make sure you have initialized all of your object’s
instance variables!

– most common occurrence of a NullPointerException is trying to send a
message to an uninitialized variable

WATCH OUT!

NullPointerException

Working With Methods

• We know how to declare methods, but how do we call them?
How can we send messages between objects?

• Syntax is: <variableName>.<methodName>();

public class City {

 private CSCI331Mobile _15mobile;

 public City() {

 _mobile = new CSCI331Mobile();

 _mobile.moveForward();

 }

}

• Sending a message (calling moveForward on _mobile) causes
the method’s code to be executed

• _mobile.moveForward(); is a method call

• _mobile is the message’s receiver (the

 instance being told to move)
• dot (“.”) separates receiver from method name

• moveForward is the name of message to be sent

• () denotes parameters sent to the message

this keyword (1 of 2)

• What if we want one method in a class to call another method in
the same class?

– say we want the CSCI331Mobile to have a turnAround() method

– want turnAround() method to call CSCI331Mobile’s own
turnLeft() or turnRight() method twice

• In order for current instance to be receiver of message, we need a
way to refer to it

• Reserved word this is shorthand for “this instance”

– this allows an instance to send a message to itself

this keyword (2 of 2)

• Example of using this to call a method on the current instance of
the class:

public void turnAround() {

 this.turnLeft();

 this.turnLeft();

}

this.turnLeft();

– tells current class to execute code in its turnLeft() method
– since calling your own methods is common, using this is optional but it

makes your code clearer
– this.turnLeft() and turnLeft() do same thing

 public void turnAround() {

 turnLeft();

 turnLeft();

 }

may be shorter, but not as clear

Example: Driving Around Victoria

• Imagine a “world” where the CSCI331Mobile moves only along
the roads defined by a regular grid:

– simplified city map: the streets of Victoria are all the same length and go only
horizontally and vertically (also, they are all 2-way)

– CSCI331Mobile can move forward in the direction that it is facing and can
turn 90 degrees left or right

– can move only one block at a time

Example: Driving Around Victoria

• How do we get CSCI331Mobile to a movie theatre (corner of
Yates and Blanchard) and back, given:

– CSCI331Mobile starts at corner of Pandora and Government facing north
(initial conditions)

D
o

u
gl

as

B
la

n
ch

ar
d

Yates

Johnson

Pandora

Q
u

ad
ra

G
o

ve
rn

m
e

n
t

We’re Done!

• It’s that simple!

• Now you know how to create and use a class

• Next time: Customizing methods and setting up associations
between objects!

