
Objects

Lecture 2

Lecture objectives - be able to answer:

1. What are properties and actions (methods)
of a software object

2. What is the difference between object class
and object instance

3. How to create objects in java

4. How to make an object to perform action in
java

What are Software Objects?

• Building blocks of software systems
– a program is a collection of interacting objects

– objects cooperate to complete a task

– to do this, they communicate by sending
“messages” to each other (and themselves!)

What can we model as objects

• Objects model tangible things
– a school

– a car

– ____________________________

– ____________________________

• Objects model conceptual things
– a meeting

– a date

• Objects model processes
– finding a path through a maze

– sorting a deck of cards

Software objects have

• capabilities: what they can do, how they
behave

• properties: features that describe them

Object Capabilities: Methods

• Objects’ capabilities allow them to perform
specific actions

- objects are smart—they “know” how to do things

- an object gets something done only if it is told to
use one of its capabilities -- by another object or
itself

• Capabilities are also called behaviours, or
methods

Capabilities can be:

• constructors: establish initial state of object’s
properties

• commands: change object’s properties
• queries: provide responses based on object’s

properties

For example: trash cans are capable of initiating, and
responding to, certain actions

- constructor: be created
- commands: add trash, empty yourself
- queries: reply whether lid is open or closed, or

how much trash is in can

Object Properties

Properties make an object unique

• affect way objects perform actions

• some properties are constant, others variable

• properties themselves are objects — they also
can receive messages; e.g., trash can’s lid

Properties can be:

• attributes: things that help describe an object
• components: things that are “part of” an object
• associations: things an object knows about, but

are not part of that object

Example: properties of trash cans

- attributes: color, size, material
- components: lid, trash bag, trash
- associations: a trash can can be associated with the

room it’s in

Object Properties: State

 State: collection of all of an object’s properties;
changes if any property changes

• some properties don’t change, e.g., the year a
car was made

• others do, e.g., car’s color

Object types

• Our current concept: each object corresponds
directly to a particular real-life object, e.g., a
specific atom or automobile

• Disadvantage: it’s much too impractical to work
with objects this way
– there may be arbitrarily many objects (e.g.,

modeling all atoms in the universe)

– may not want to describe each individual object
separately; they may have much in common –
belong to the same type

Classes and Instances
• Classifying objects factors out commonality

among sets of similar objects

– describe what is common just once

– then “stamp out” any number of copies later

Rubber stamp
(object class)

Imprints

(object instances)

Object: class and instances

Object Class

• a class is a type of object

• defines capabilities and

 properties common

 among a set of individual objects
– all trash cans can open, close,

empty their trash

• defines template for making object instances
– particular trash can instances may have a metal casing, be blue, be a

certain size, etc.

JVM

CLASS

Object Class

Classes implement capabilities as methods

• A method is a sequence of statements in Java

• The sender sends a message to the receiver by calling
one of the receiver’s methods

– a car object may send a message to an engine object to tell it
to turn on

Classes implement properties as instance variables

• slot of memory allocated to the object that can hold a
potentially changeable value

– e.g., GPA of a particular student

Object Instances
• Object instances are individual objects

– made from class template

– can have many object instances of the same class

– all will have the same attributes, but may have different values for them

– e.g. two object instances of Car will both have a color, but one may be red
and one may be blue

– the process of creating an object instance is called instantiating an object

• Different instances of the TrashCan class may have:

– different color and position

– different types of trash inside

• So their instance variables have different values
– However, each is still a TrashCan

Instance identity

• Individual instances have individual identities
– this allows other objects to send messages to given

objects
– each instance is unique because of the values given to

its properties, even though they all have the same
capabilities

– think of the CSCI-331 student instances in our class

• We will assign an instance to a variable. Java is a
typed language, so we need to declare the variable
of a specific type

• Classes that we create just extend existing type
system with new types

Variable must have a type

Variable must have a name

Variables

• Variable is just a cup. A container. It holds
something

small short tall grande

byte short int long

Java integer primitive data types

Variables for primitive data types

• You say to the compiler: “I’d like an int variable
please with the value 90, and name the
variable height”

byte short int long

Java integer primitive data types

int height=90;

Size of numeric variables

byte short int long

Java numeric primitive data types – size in bits

double float

8 16 32 64 32 64

Compiler prevents spilling
 1. int x = 34.5;

 2. boolean boo = x;

 3. int g = 17;

 4. int y = g;

 5. y = y + 10;

 6. short s;

 7. s = y;

 8. byte b = 3;

 9. byte v = b;

10. short n = 12;

11. v = n;

12. byte k = 128;

Variables to store objects

• There is actually no such thing as an object
variable. You can’t stuff objects of different sizes
into a cup

• There’s only an object reference variable. An
object reference variable holds bits that represent
a way to access an object.

• It doesn’t hold the object itself, but it holds
something like a pointer. Or an address. Except, in
Java we don’t really know what is inside a
reference variable. We do know that whatever it is,
it represents one and only one object. And the
JVM knows how to use the reference to get to the
object.

Reference variable

Dog myDog;

– reference variable of type dog.
Does not reference any instance,
has value null, and cannot call
any methods of Dog class

reference short int long

When the instance is created

Dog myDog;

myDog=new Dog();

myDog.bark();

An instance of class Dog is created
(somewhere),

and myDog is a reference to this
instance

Now we can call
the methods of
class Dog

Where the instance is created

• Unlike C++, in Java all objects are created with a
keyword new. This means that all objects live on the
heap, not in the stack.

Dog myDog;
Dog * myDog=new Dog();

Dog myDog;
Dog myDog=new Dog();

In Java, all primitive variables and the reference variables live in the
stack, but all objects live on the heap

C++

Java

Object is created in the stack

Reference and value

• An object reference is just another variable value.

• Something that goes into the cap.

reference

int

Primitive variable:
int x=7;

The bits
representing 7 go
into the cap

Primitive
value

Reference variable:
Dog d=new Dog();

The bits
representing a way
to get to the Dog
object go into the
cap

Dog
object

Reference and value

• An object reference is just another variable value.

reference

Reference variable:
Dog d=new Dog();

With primitive variables, the value of the variable is...
the value (5, -26.7, ‘a’).
With reference variables, the value of the
variable is... bits representing a way to get to a specific
object.
You don’t know (or care) how any particular JVM
implements object references. Even if you know, you
still can’t use the bits for anything other than
accessing an object.

Dog
object

Assigning references I

• Book b=new Book();

• Book c=new Book();

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

2

2

Assigning references II

• Book b=new Book();

• Book c=new Book();

• Book d=c;

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

Book

d

3

2

Assigning references III

• Book b=new Book();

• Book c=new Book();

• Book d=c;

• c=b;

References:

Objects:

Book
object 2

Book

d

Book

Book
object 1

b

Book

c

3

2

Assigning references IV

• Book b=new Book();

• Book c=new Book();

• b=c;

Book
object 1

References:

Reachable Objects:

Abandoned objects:

Book

b

Book

Book
object 2

c

2

1

1

Assigning references V

• Book b=new Book();

• Book c=new Book();

• b=c;

• c=null;

Book

Book
object 1

b

Active References: 1
Null references: 1
Reachable Objects: 1
Abandoned objects: 1

Book

Book
object 2

c

Digression: Memory
• Registers. Fast, inside the processor. Very small, Out of our control.

• The stack. RAM, but direct support from the processor via its stack

pointer. An extremely fast and efficient way to allocate storage. While some
Java storage exists on the stack—in particular, object references—Java
objects themselves are not placed on the stack.

• The heap. RAM, a general-purpose pool of memory where all Java

objects live. Flexibility – since is allocated in a run time. It takes more time to
allocate heap storage than it does to allocate stack storage (if you even could
create objects on the stack in Java, as you can in C++).

• Static storage. “Static” is used here in the sense of “in a fixed location”.

• Constant storage. Constant values are often placed directly in the

program code.

• Non-RAM storage. The examples are streamed objects, and persistent

objects

Object allocation on stack and heap:
C++

• C++ takes the approach that control of efficiency is the
most important issue, so it gives the programmer a
choice:

– For maximum run-time speed, the storage and lifetime can
be determined while the program is being written, by placing
the objects on the stack (these are sometimes called
automatic or scoped variables).

– This places a priority on the speed of storage allocation

– However, you sacrifice flexibility because you must know the
exact quantity, lifetime, and type of objects while you're
writing the program.

– If you are trying to solve a more general problem such as
computer-aided design, warehouse management, or air-
traffic control, this is too restrictive.

Object allocation on stack and heap:
Java

• Java creates objects dynamically in a pool of memory called
the heap.
– In this approach, you don't know until run time how many

objects you need, what their lifetime is, or what their exact type
is. Those are determined at the spur of the moment while the
program is running.

– If you need a new object, you simply make it on the heap at the
point that you need it.

– Because the storage is managed dynamically, at run time, the
amount of time required to allocate storage on the heap can be
noticeably longer than the time to create storage on the stack.

– The dynamic approach makes the generally logical assumption
that objects tend to be complicated, so the extra overhead of
finding storage and releasing that storage will not have an
important impact on the creation of an object.

– In addition, the greater flexibility is essential to solve the general
programming problem

The issue: lifetime of an object
• With languages that allow objects to be created on the stack, the

compiler determines how long the object lasts and can automatically
destroy it.

• However, if you create it on the heap the compiler has no knowledge
of its lifetime.

• In a language like C++, you must determine programmatically when to
destroy the object, which can lead to memory leaks if you don’t do it
correctly.

• Java provides a feature called a garbage collector that automatically
discovers when an object is no longer in use and destroys it.

• A garbage collector is much more convenient because it reduces the
number of issues that you must track and the code you must write.

• More important, the garbage collector provides a much higher level of
insurance against the insidious problem of memory leaks.

How expensive it is to allocate objects
on the heap

• You can think of the C++ heap as a yard where each
object needs to find a free place and then stake out its
own piece of turf. This real estate can become
abandoned sometime later and must be reused.

• In some JVMs, the Java heap is quite different; it’s
more like a conveyor belt that moves forward every
time you allocate a new object. This means that object
storage allocation is remarkably rapid. The “heap
pointer” is simply moved forward into virgin territory,
so it’s effectively the same as C++’s stack allocation. (Of
course, there’s a little extra overhead for bookkeeping,
but it’s nothing like searching for storage.)

JVM tricks

• Now you might observe that the heap isn’t in fact a
conveyor belt, and if you treat it that way, you’ll
eventually start paging memory a lot (which is a big
performance hit) and later run out.

• The trick is that the garbage collector steps in, and
while it collects the garbage it compacts all the objects
in the heap so that you’ve effectively moved the “heap
pointer” closer to the beginning of the conveyor belt
and farther away from a page fault.

• The garbage collector rearranges things and makes it
possible for the high-speed, infinite-free-heap model to
be used while allocating storage.

How does garbage collector work I

• A simple but slow garbage collection technique is
called reference counting.

• The garbage collector moves through the entire
list of objects, and when it finds one with a
reference count of zero it releases that storage.

• The one drawback is that if objects circularly refer
to each other they can have nonzero reference
counts while still being garbage.

• It doesn’t seem to be used in any JVM
implementation.

How does garbage collector work II

• Garbage collection is not based on reference counting.
• It is based on the idea that any nondead object must

ultimately be traceable back to a reference that lives
either on the stack or in static storage.

• Thus, if you start in the stack and walk through all the
references, you’ll find all the live objects.

• For each reference that you find, you must trace into
the object that it points to and then follow all the
references in that object, tracing into the objects they
point to, etc., until you’ve moved through the entire
web that originated with the reference on the stack.

• Note that there is no problem with detached self-
referential groups—these are simply not found, and
are therefore automatically garbage.

Garbage collector is not working in the
background

• The garbage collection is not done in the background;
instead, the program is stopped while the garbage
collection occurs.

• In the Sun literature you’ll find many references to
garbage collection as a low-priority background
process, but it turns out that the garbage collection
was not implemented that way.

• Instead, the Sun garbage collector runs when memory
got low. In addition, it requires that the program be
stopped.

• If you want your object to be destroyed right away, call
object.gc();

Summary: Life and death of an object

• Objects in Java are allocated only on the heap
using keyword new

• Each variable of a non-primitive type is a
reference variable, it is allocated in the stack
(during compilation) and it stores the path to a
real object which will be created in a run time.

• Abandoned (unreferenced) objects are cleared
automatically by Java garbage collector

• Garbage collection is not guaranteed until the
memory is running low

Messages for Object Communication
• No instance is an island — it must communicate with others to accomplish tasks

– associations allow them to know about other objects

• Instances send messages to one another to invoke capabilities (i.e., to execute a

task)
– messages are sent via methods -- code that executes a task
– each message invokes the corresponding method in the receiving object
– when a human object sends a message to a car object to tell it to move, we say the

human object calls a method on the car object

• Each message requires:
– sender: object initiating action
– receiver: instance whose method is being called
– message name: name of method being called
– optional parameters: extra info needed by method to operate (Parameters are also

called arguments)
• we’ll discuss parameters in detail in a few lectures

• Receiver can (but does not need to) reply

– we’ll discuss return types in detail in the next lecture

Encapsulation
• A car encapsulates lots of information

– quite literally, under hood and behind dashboard

• So, you do not need to know how a car works in order to use it
– steering wheel and gear shift are the interface
– engine, transmission, drive train, wheels, . . . , are the (hidden) implementation

• Likewise, you do not need to know how an object works to send messages
to it

• But, you do need to know what messages it understands (i.e., what its
capabilities are)
– class of instance defines the messages that can be sent to it

†Interface in the generic sense, not the Java syntax sense

Views of a Class

• Objects separate interface†
 from implementation

– object is “black box,” hiding internal workings and parts

– interface protects implementation from misuse

Public Capability Public Capability

Public Capability Public Capability

Public Capability Public Capability

Private
Properties

Views of a Class

• Interface: public view
– allows instances to cooperate with one another

without knowing too many details

– like a written agreement: consists of a list of
capabilities and documentation on how to use
them

• Implementation: private view
– properties that help capabilities complete their

tasks

– like the engine of a car

Always declare attributes as private

Dog d=new Dog();

d.height=25;

d.height=0;

…

d.bark();

Notes About Java Syntax
• Reserved words (keywords)

– certain words in Java have a particular meaning and cannot
be used for any other purpose

– these are case-sensitive, and consist entirely of lower case
letters

class public new private extends

• Identifiers

– names assigned for classes, methods, and variables

– first character must be a letter or underscore

– the rest may be any combination of letters, numbers, and
underscores — but no spaces

 Professor _5thStreet

 aPrettyLongName a_pretty_long_name

Making Code More Readable

• Naming conventions
– conventions are things we suggest to make code

more consistent and easier to understand

– this is purely aesthetic; not enforced by the
compiler

• We use capitalization to distinguish an
identifier’s purpose
– class names begin with upper case letters

– method names begin with lower case

– instance variables start with an underscore

Coding conventions

Use names indicative of functionality

class:

method:

instance:

Good Name

Professor

teachClass

_csci331Professor

Poor Name

Thing (no role, purpose)

doStuff (not specific)

p (too cryptic)

A Complete Program
• Here is our first complete Java program, where we are

going to use already written classes Ball and BallApp

• We will deconstruct this code

 public class BallApp extends JFrame
{

 public BallApp(String title)

 {

 }

public void addBall(Ball ball)

{

}

 public static void main(String[] argv)

 {

 BallApp app= new BallApp(“Bouncing ball”);

 }

}

Syntax: Declaring a Class

• Class declaration tells Java compiler that we are about to define
a new class
– i.e., we are “declaring” our intent to “define” a class that can be used as

a template to instantiate object instances

– a program must include at least one class definition

public class BallApp extends javax.swing.JFrame

• Reserved word public indicates that anyone can create an
instance of this class

• Reserved word class indicates to Java that we are going to
define a new class

• BallApp is the name of the class

– chosen to indicate that it is an application (or program) with a bouncing
ball

• extends javax.swing.JFrame means:

– extends the functionality of an existing class

– this is called inheritance and will be covered soon

Syntax: Defining the Class
• Class definition following a declaration tells the Java compiler what it means

to make an instance of this class and how that instance will respond to
messages
– thus, simply declaring a class is not enough
– we must also define what a class does (i.e., how it will fulfill its purpose – its

properties and capabilities)

• Curly braces, {}, indicate beginning and end of a logical block of code or
“code body:” in this case, a class definition
– represent difference between declaration and definition
– code written between curly braces is associated with class declared immediately

before them

public class BallApp extends javax.swing.JFrame

{

}

– this is an example of an empty code block. While this “nothing” or “null” code
compiles because it is legal, i.e., syntactically correct, it does not do anything useful

• Java programs are composed of any number of class definitions
– in this respect, Java code is like a dictionary: “declaration” of concept, followed by its

definition
– no code can appear outside of a class definition

Constructors
• Constructor: a special method that is called whenever a class is instantiated (created)

– another object sends a message that calls a constructor

– constructor is the first message an object receives and cannot be called
subsequently on the instance

– establishes initial state of properties for the object instance

• If you do not define any constructors for a class, Java writes one for you

– called default constructor

– default constructor will initialize each instance variable to its default value

– If you write at least one non-default constructor, you cannot use the default
constructor anymore

public class BallApp extends JFrame

{

 public BallApp(String title)

 {

 }

}

Object Instantiation

Main is the entry point of your program

The instance of BallApp is created

public class BallApp extends JFrame

{

 public BallApp(String title)

 {

 }

 public static void main(String [] args)

 {

 BallApp app=new BallApp (“Bouncing ball”);

 }

}

Calling object commands

We create an instance of a ball and add it to the BallApp, which is a JFrame – a
window for holding other components

Note, that we were able to add the ball because BallApp has a corresponding
method – understands our command

public class BallApp extends JFrame

{

 public BallApp(String title)

 {

 }

 public void addBall(Ball ball)

 {

 }

 public static void main(String [] args)

 {

 BallApp app=new BallApp (“Bouncing ball”);

 Ball b=new Ball();

 app.addBall(b);

 }

}

Making ball bounce

public class BallApp extends JFrame

{

 public BallApp(String title)

 {

 }

 public void addBall(Ball ball)

 {

 }

 public static void main(String [] args)

 {

 BallApp app=new BallApp (“Bouncing ball”);

 Ball b=new Ball();

 app.addBall(b);

 b.startBouncing();

 }

}

How Java program is executed
• User starts program by typing java BallApp in a terminal

• JavaVM calls the method main(…)

• BallApp is instantiated by the new command

– i.e., constructor BallApp(String) is called

• The body of the BallApp() constructor draws an empty window
on the screen

• We create a new instance of a Ball. We call next BallApp’s
method addBall. BallApp (and anything constructed in it) runs
until program terminates.

• Ball knows how to bounce and doesn’t stop on its own, so it will
keep going until BallApp is destroyed

Final notes about the Ball

• The interface for bouncing ball is extremely
simple — instantiate it and watch it go
– pro: it is easy (it does all the work!)

– con: impossible to change anything about the ball

– class interfaces can be this simple or much, much
more complex

• We will spend much of our time exploring
appropriate class interfaces to make collections
of objects work together to do something
useful

Client and Server programming

• Client programming – composing a useful
program from existing components – objects

• Server programming – creating new useful
components. The principle here: each
component knows how to do something well,
not too much.

• In the BallApp we were in a role of client
programmers

Summary

• We use objects to abstract parts of reality

• We distinguish object types. The type of an
object – or a class – defines properties (fields)
and methods (what messages does the object
understand)

• In java, we can create an instance of an object
only on the heap

• We make an object do things by calling a
method that is defined in an object class

Class is not an object

JVM

CLASS

