
Sorting: Java way

Lecture 13

Java collections framework

• Adding as many elements as you want

• Finding items by name

• Automatically remove all duplicates

• Sorting

• Searching

ArrayList: automatically resizable array

ArrayList: automatically resizable array

SuppressWarnings annotation

all to suppress all warnings
boxing to suppress warnings relative to boxing/unboxing
operations
cast to suppress warnings relative to cast operations
fallthrough to suppress warnings relative to missing breaks in
switch statements
null to suppress warnings relative to null analysis
rawtypes to suppress warnings relative to un-specific types
when using generics on class params
unchecked to suppress warnings relative to unchecked
operations
unused to suppress warnings relative to unused code

Raw Array List: contains Object elements

package sorting;

import java.util.*;

public class SortingStrings

{

@SuppressWarnings(value={"unchecked","rawtypes"})

public static void main (String [] args)

{

String [] stuff={"apple","orange","bagel","monster","youtube"};

List s=new LinkedList(Arrays.asList(stuff));

Collections.sort(s);

System.out.println(s);

Collections.sort(s,Collections.reverseOrder());

System.out.println(s);

}

}

Sorting song names: reader
@SuppressWarnings(value={"unchecked","rawtypes"})

public class SongsNameReader {

List songList = new ArrayList();

public void go() {readSongs();}

void readSongs()

{

try{

File file = new File("songs.txt");

BufferedReader reader = new BufferedReader(new FileReader(file));

String line = null;

while ((line= reader.readLine()) != null) { addSong(line);}

reader.close();

} catch(Exception ex) { ex.printStackTrace();}

}

void addSong(String lineToParse) {

String[] tokens = lineToParse.split(",");

songList.add(tokens[0]);

}

}

Sorting song names: sort
package sorting;
import java.util.*;

@SuppressWarnings(value={"unchecked","rawtypes"})
public class SortingSongNames
{
 public static void main(String[] args)
 {

 SongsNameReader reader=new SongsNameReader();
 reader.go();
 List songNames=reader.songList;
 System.out.println(songNames);

 System.out.println("Sorted songs:");
 Collections.sort(songNames);
 System.out.println(songNames);
 }
}

Sorting songs: Song class
public class Song {
 private String name;
 private String artist;
 private int rank;

 public Song(String name,String artist, int rank)
 {
 this.name =name;
 this.artist =artist;
 this.rank=rank;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getArtist() {
 return artist;
 }
 public void setArtist(String artist) {
 this.artist = artist;
 }
 public int getRank() {
 return rank;
 }
 public void setRank(int rank) {
 this.rank = rank;
 }

}

Sorting songs: SongsReader

void addSong(String lineToParse) {

 String[] tokens = lineToParse.split(",");

 songList.add(new Song(tokens[0],tokens[1],Integer.parseInt(tokens[2])));

 }

Sorting songs: printing songs

SongsReader reader=new SongsReader();

reader.go();

List songs=reader.songList;

System.out.println(songs);

[sorting.Song@15b7986, sorting.Song@87816d, sorting.Song@422ede,
sorting.Song@112f614]

Sorting songs: override toString

@Override

public String toString() {

 return "Song [name=" + name + ", artist=" + artist + ", rank=" + rank+ "]";

}

[Song [name=Whistle, artist=Flo Rida, rank=7], Song [name=Too Close,
artist=Alex Clare, rank=9], Song [name=Good Time, artist=Owl City, rank=6],
Song [name=Home, artist=Phillip Phillips, rank=1]]

Sorting songs: sort

System.out.println("Sorted songs:");
Collections.sort(songs);
System.out.println(songs);

Exception in thread "main" java.lang.ClassCastException: sorting.Song cannot be cast to
java.lang.Comparable
at java.util.ComparableTimSort.countRunAndMakeAscending(Unknown Source)
at java.util.ComparableTimSort.sort(Unknown Source)
at java.util.ComparableTimSort.sort(Unknown Source)
at java.util.Arrays.sort(Unknown Source)
at java.util.Collections.sort(Unknown Source)
at sorting.SortingSongs.main(SortingSongs.java:16)

Bubble Sort
• Iterate through sequence, compare each element to right

neighbor.

• Exchange adjacent elements if necessary.

• Keep passing through sequence until no exchanges are required
(up to N times).

• Each pass causes largest element to bubble into place: 1st pass,
largest; 2nd pass, 2nd largest, ...

• Therefore get a sorted sub-array on the right and can stop one
position sooner each pass (more efficient than brute force
bubbling through entire array each pass…)

Insertion Sort

• Like inserting a new card into a partially sorted hand
by bubbling to the left into sorted subarray on left;
little less brute-force than bubble sort

– add one element a[i] at a time

– find proper position, j+1, to the left by shifting to
the right a[i-1], a[i-2], ..., a[j+1] left neighbors, until

 a[j] < a[i]

– move a[i] into vacated a[j+1]

• After iteration i<n, the original a[0] ... a[i] are in sorted
order, but not necessarily in final position

Java Collections use Merge sort

• Partition sequence into two sub-sequences of N/2 elements.

• Recursively partition and sort each sub-sequence.

• Merge the sorted sub-sequences.

Main part of every sorting algorithm:

• Comparing two elements

Collections.sort API
 sort

public static void sort(List list)

 Sorts the specified list into ascending order, according to the natural ordering of its
elements. All elements in the list must implement the Comparable interface.
Furthermore, all elements in the list must be mutually comparable (that is,
e1.compareTo(e2) must not throw a ClassCastException for any elements e1 and e2 in
the list).

 This sort is guaranteed to be stable: equal elements will not be reordered as a result
of the sort.

 The specified list must be modifiable, but need not be resizable.

 The sorting algorithm is a modified mergesort (in which the merge is omitted if the
highest element in the low sublist is less than the lowest element in the high sublist).
This algorithm offers guaranteed n log(n) performance. This implementation dumps
the specified list into an array, sorts the array, and iterates over the list resetting each
element from the corresponding position in the array. This avoids the n2 log(n)
performance that would result from attempting to sort a linked list in place.

Interface Comparable - API:
defines a single method

 compareTo

int compareTo(T o)

 Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less than, equal to, or greater
than the specified object.

 The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies that x.compareTo(y) must throw an exception iff
y.compareTo(x) throws an exception.)

 The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0.

 Finally, the implementor must ensure that x.compareTo(y)==0 implies that sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

 It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any class that implements the
Comparable interface and violates this condition should clearly indicate this fact. The recommended language is "Note: this class has a natural ordering that is
inconsistent with equals."

 In the foregoing description, the notation sgn(expression) designates the mathematical signum function, which is defined to return one of -1, 0, or 1
according to whether the value of expression is negative, zero or positive.

 Parameters:

 o - the object to be compared.

 Returns:

 a negative integer, zero, or a positive integer as this object is less than, equal to, or greater than the specified object.

 Throws:

 ClassCastException - if the specified object's type prevents it from being compared to this object.

How do we compare songs?
Natural order

public class Song implements Comparable {

public int compareTo(Object another)

 {

 Song song=(Song)another;

 return this.name.compareTo(song.name);

 }

}

Now the sorting works

Sorted songs:
[Song [name=Good Time, artist=Owl City, rank=6], Song [name=Home, artist=Phillip Phillips,
rank=1], Song [name=Too Close, artist=Alex Clare, rank=9], Song [name=Whistle, artist=Flo
Rida, rank=7]]

New challenge: sorting by rank

• But when you make a collection comparable,
you get only one chance to implement the
compareTo() method.

Invoking Collections.sort(List o, Comparator c)

• Invoking the one-argument sort(List 0) method
means the list element’s compareTo() method
determines the order. So the elements in the list
MUST implement the Comparable interface

• Invoking sort(List o, Comparator c) means the lit
element’s compareTo() method will NOT be
called, and the Comparator’s compare() method
will be used instead

• If you do not have a source code of an element’s
class, you can still put things in order by creating
a Comparator

Implementing RankComparator

import java.util.Comparator;

@SuppressWarnings(value={"rawtypes"})
public class RankComparator implements Comparator
{
 public int compare(Object one, Object two)
 {
 Song song1=(Song)one;
 Song song2=(Song)two;

 if(song1.getRank()>song2.getRank())
 return 1;
 if(song1.getRank()<song2.getRank())
 return -1;
 return 0;
 }
}

Sorting songs by rank

System.out.println("Sorted by rank:");

RankComparator rankC=new RankComparator();

Collections.sort(songs, rankC);

System.out.println(songs);

Sorted by rank:
[Song [name=Home, artist=Phillip Phillips, rank=1], Song [name=Good Time, artist=Owl
City, rank=6], Song [name=Whistle, artist=Flo Rida, rank=7], Song [name=Too Close,
artist=Alex Clare, rank=9]]

How to sort by artist?

Tomorrow in the lab

• Write all possible sorting methods for books
collection

• This has the only purpose: to make you
remember how the sorting in Java works

• You can use parametrized types for your book
list, if you know what it is. (We have used Raw
types here in order to present a concept of
sorting)

• Given the following compilable statement:

Collections.sort(myArrayList);

1. What must the class of objects stored in
myArrayList implement?

2. What method must it implement?

3. Can the class of objects stored in myArrayList
implement both Comparator and
Comparable?

• Given the following compilable statement:
Collections.sort (myList, myComparator)
1. Can the class of the objects stored in myList implement

Comparable?
2. Can it implement Comparator?
3. Must the class of the objects stored in myList implement

Comparable?
4. Must it implement Comparator?
5. What must the class of the myCompare object

implement?
6. What method must the class of the myComparator object

implement?

