
Course description

Lecture 1

The course is about

• Object-oriented approach to programming

• Fundamentals of system modeling

• Java programming skills

Course audience

Who is it for?

• students with varying levels of programming
experience -- including NONE!

• anyone who wants to master craft of program
design and implementation

Why Java? Methodological

• Fully Object-Oriented language

• Simple clean small type system

Java syntax is simple
int size = 27;

String name = “Fido”;

Dog myDog
 = new Dog(name, size);

int x = size - 5;

if (x < 15)
 myDog.bark(8);

while (x > 3)
{
 myDog.play();
}

int [] numList = {2,4,6,8};

System.out.print(“Hello”);

System.out.print(“Dog: “ +
 name);

String num = “8”;

int z = Integer.parseInt(num);

try

{

 readTheFile(“myFile.txt”);

}

catch(Exception ex)

{

 System.out.print

 (“File not found.”);

}

Why Java? Methodological

• Fully Object-Oriented language

• Simple clean small type system

• Platform-independent: write once, run
everywhere (in principle)

• Java does a lot more bookkeeping and
resource management for you: concentrate on
the task, not on the computer organization

Monday morning at Bob’s

Delay the coffee 20 minutes

Hold the
toast

Get the paper,
no walk

All devices communicate in Java

• His toast is toasted.

• His coffee steams.

• His paper awaits.

Just another wonderful morning in The Java-
Enabled House.

Why Java? Methodological

• Fully Object-Oriented language

• Simple clean small type system

• Platform-independent: write once, run
everywhere (in principle)

• Java does a lot more bookkeeping and
resource management for you: concentrate on
the task, not on the computer organization

Java drawbacks

Slow: due to

• Garbage collector

• Compilation from byte code to JIT – Just In
Time – machine code

Why Java? Pragmatic

• Large projects with short schedule: divide work
into components

• Long-lived, reliable, modifiable software

• It is the most prevalent language for the Web,
and one of the most prevalent languages in
industry today (others include C, C++, Python,
Ruby…etc.)

http://langpop.com/
(Programming Language Popularity.htm)

Programming Language Popularity.htm
Programming Language Popularity.htm
Programming Language Popularity.htm

Course distinctive features

• Building small building blocks and combining
them into a more complex system

• Using a high-level language as a black-box –
less technical details of what is actually
happening in the machine

• Solving problems in your own way – develop
creativity

Textbook

Introduction to Programming and Object-
Oriented Design Using Java by Jaime Nino and
Frederick A. Hosch, 2008, ISBN-10: 0470128712

Optional, used for this course

• Free Electronic Book: Thinking in Java by
Bruce Eckel

• Head First Object-Oriented Analysis and
Design by Brett D. McLaughlin, Gary Pollice
and Dave West

• Object-Oriented Programming in Java: A
Graphical Approach, 2005, by Sanders, van
Dam ISBN-10: 0321245741

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/

Declarative and imperative knowledge

• Declarative knowledge: Nanaimo is on
Vancouver Island

– Explicit knowledge: know-what (facts), know-why
(science)

• Imperative knowledge: can only be revealed
through practice in a particular context: riding
a bicycle

– Implicit knowledge: know-how

Course assessment

This is a practical lab-based hands-on course

• 10 programming assignments – total 50 points

• 10 home quizzes (test understanding of
concepts) – total 30 points

• Final project – total 20 points

Course mechanics

Early and Late Hand-In Policy

• submit programs 2 days early for extra credit

• penalty for programs handed in up to 2 days late

Keys to success

• start early, work steadily, don’t fall behind

• you can’t cram, unlike other courses

• exponential growth of program size throughout
the semester

Collaboration
Programming is learnt best when student is solving problems
on his own, with adequate help from the instructor

• The course grade is entirely based on programs & home
works, all your own work. Only collaboration that is
properly documented is allowed, while working on the final
project.

• Plagiarism detection with MOSS (Measure of Software
Similarity)

http://theory.stanford.edu/~aiken/moss/

• Punishments: zero grade, penalty grade, suspension (no jail
time).

From: VIU Academic code of conduct

Plagiarism is the unacknowledged use of someone
else’s words, ideas, or data regardless of source.
When a student submits work for credit that
includes the words, ideas or data of others, the
source of that information must be acknowledged
through complete, accurate, and specific
references. By placing their names on work
submitted for credit, students certify the originality
of all work not otherwise identified by appropriate
acknowledgments.

Lecture objectives

To be able to:

• Explain what is Object-Oriented Programming
(OOP)

• Understand the concept of abstraction

• Understand the concept of encapsulation

Abstraction

• Each piece of code is an abstraction of a real-
life object or process

• Abstraction contains only important features

History: the progress of abstraction I

• The 1950s – Machine code is common. Assembly
language abstracts an underlying computing
machine

• The 1960s - “Imperative” languages (FORTRAN,
BASIC, C) – built as an abstraction level upon
Assembly. Their primary abstraction still requires
you to think in terms of the structure of the
computer rather than the structure of the
problem you are trying to solve.

History: the progress of abstraction II

• The 1970s - The alternative to modeling the
machine is to model the problem you’re trying
to solve. Early languages such as LISP and APL
chose particular views of the world (“All
problems are ultimately lists” or “All problems
are algorithmic,” respectively). PROLOG casts
all problems into chains of decisions.

History: the progress of abstraction III

• The 1980s – “modular” languages (Modula-2,
ADA) – can work on each part separately,
precursors of modern OOP

The structured programming
paradigm: daily activities example

Split this list into three blocks of related activities and
give each block a heading
• Get out of bed
• Eat breakfast
• Park the car
• Get dressed
• Get the car out of the garage
• Drive to work
• Find out what your boss wants you to do today
• Feedback to the boss on today’s results.
• Do what the boss wants you to do

Daily activities modules
Get up
• Get out of bed
• Get dressed
• Eat breakfast

Go to work
• Get the car out of the garage
• Drive to work
• Park the car

Do your job
• Find out what your boss wants you to do today
• Feedback to the boss on today’s results.
• Do what the boss wants you to do

We can work on each part separately

Improve instructions in go to work module:
• Listen to the local traffic and weather report

• Decide whether to go by bus or by car

• If going by car, get the car and drive to work.

• Else walk to the bus station and catch the bus

Other modules are not affected

History: the progress of abstraction III

• The 1980s – “modular” languages (Modula-2,
ADA) – can work on each part separately,
precursors of modern OOP

• The 1990s – Object-Oriented paradigm and
component-based programming. Wide use of
OOP languages (Simula '67 and Smalltalk '72)

• From 2000 – OOP is a standard programming
paradigm for developing complex systems

OOP – flexible abstraction of the
problem space

• OOP provides tools for the programmer to represent
elements in the problem space. This representation is
general enough that the programmer is not
constrained to any particular type of problem.

• We refer to the elements in the problem space and
their representations in the solution space as “objects.”

• The idea is that the program is allowed to adapt itself
to the lingo of the problem by adding new types of
objects, so when you read the code describing the
solution, you’re reading words that also express the
problem.

Object-Oriented Programming
paradigm (by Alan Kay)

• Everything is an object.

• A program is a bunch of objects telling each
other what to do by sending messages.

• Each object has its own memory made up of
other objects.

• Every object has a type.

• All objects of a particular type can receive the
same messages.

Alan Kay, received ACM’s Turing Award, the “Nobel Prize of Computing,” in 2003 for
Smalltalk, the first complete dynamic OOPL

OOP benefits

• We can create and manipulate objects
independently of each other:

– change and improve without affecting the working
code

• By concentrating on one object at a time we
can simulate complex systems

• We can reuse the same components in
multiple scenarios

Real-world objects

Benjamin Sean

Take order

result

Program objects

Benjamin Sean
takeOrder (sofa type,
who, address,
delivery date)

message

arguments

object object

method

OOP principles (just a beginning)

• Abstraction

• Encapsulation

Abstraction

Benjamin

object

method

Benjamin

A
B
S
T
R
A
C
T
I
O
N

Only important features

Importance is task-oriented

Encapsulation

• The implementation is hidden from the
outside world

• Only method signature is outward-facing and
is accessible from outside. This is called object
interface

Summary

• We model real world objects by abstracting
selected properties and actions of these objects,
ignoring details.

• The Object-oriented program is a system of
collaborating objects. They collaborate by
sending messages.

• The outside objects do not know how object A
does its thing. Object A encapsulates its
methods, and shows only method signatures –
interface.

