
Modeling with objects. Part II:
dynamic models

Lecture 24

To complete UML class diagram:

• Classes

• Structural relationships between classes:
association, aggregation, composition

• Generalization/Specialization hierarchies

• Attributes

• Methods

Interacting objects

• We can determine the required methods of a
given object only by looking what services are
expected from this object by other
participating objects

• In order to find all the methods, we need to
go through sequences of possible events

Object State

• The collective set of all object attribute values
at a given point of time

• This includes ‘simple’ attributes and attributes
which represent references to other objects

Object (instance) diagrams

• Reflect a sample state of a given object

Object interactions affect their state

Example: switching majors

Only some objects change state as a
result of interaction

Object interactions are triggered by
events

• Event->message=method call

• An event can be initiated by:

– user

– another automatic system

– another object
Internal event

Response to a message by an object

• Change its state
Professor p = new Professor();
Student s = new Student();
p.addAdvisee(s);

• Delegate message to another object
Section x = new Section();
Student s = new Student();
x.register(s);

//Inside Section class:
public boolean register(Student s) {
 boolean completed = s.successfullyCompleted(some prerequisite);
 if (completed) { //register the student and return true}
 else { return false;}
}

• Return a value
• Ignore

// Professor p "ignores" this message, if a student is already in his advisee list
p.addAdvisee(s);

Scenarios

• A scenario depicts a sequence of internal
events

• Each scenario is a hypothetical instance of
how a particular use case might play out

Scenario = instance of use case

Scenario: A sequence of events esp. when imagined; esp. : an account
or synopsis of a possible course of action or events.
 Dictionary definition

Best case scenario #1:

Instance of use case “Registration for a course”

1. Fred, a student, logs on to the SRS.

2. He views the schedule of classes for the current semester to
determine which section(s) he wishes to register for.

3. Fred requests a seat in a particular section of a course entitled
“Object-oriented programming,” course number CSCI331, section 1.

4. Fred’s plan of study is checked to ensure that the requested course
is appropriate for his overall degree goals. (Assuming students are
not permitted to take courses outside of their plans of study.)

5. His transcript is checked to ensure that he has satisfied all of the
prerequisites for the requested course, if there are any.

6. Seating availability in the section is confirmed.

7. The section is added to Fred’s current course load.

Scenario #2:

Instance of use case “Registration for a course”

1. -II-

2. -II-

3. -II-

4. -II-

5. His transcript is checked to ensure that he has satisfied all of the
prerequisites for the requested course, if there are any.

6. Seating availability in the section is checked, but the section is
found to be full.

7. Fred is asked if he wishes to be put on a first come, first served
wait list.

8. Fred chooses to be placed on the wait list.

Sequence diagrams

• Used to formalize scenarios

• Then used to deduce required object methods

Steps to build UML sequence diagrams
for a given scenario

1. Determine participating objects and actors

2. Place objects horizontally and draw life lines
for each object

3. Indicate sending of each message by a solid
line between a pair of objects

4. Indicate returning message by a dashed line

5. Arrange sending and receiving of messages
chronologically from top to bottom according
to the given scenario

Scenario #1:
1. Fred, a student, logs on to the SRS.

2. He views the schedule of classes for the current semester to
determine which section(s) he wishes to register for.

3. Fred requests a seat in a particular section of a course entitled
“Object-oriented programming,” course number CSCI331,
section 1.

4. Fred’s plan of study is checked to ensure that the requested
course is appropriate for his overall degree goals. (Assuming
students are not permitted to take courses outside of their plans
of study.)

5. His transcript is checked to ensure that he has satisfied all of the
prerequisites for the requested course, if there are any.

6. Seating availability in the section is confirmed.

7. The section is added to Fred’s current course load.

Sequence diagram Step 1. List of
participants

• One Student object (representing Fred)

• One Section object (representing the course
entitled “Object-oriented programming”

• One PlanOfStudy object, belonging to Fred

• One Transcript object, also belonging to Fred

• One ScheduleOfClasses object

• One Student actor (Fred again!)

We don’t have ScheduleOfClasses in
our structural class diagram

Update UML class diagram

Sequence diagram Step 2. Arrange
participating objects in a header row

CSCI331

Sequence diagram Step 2. Draw life
lines

CSCI331

Sequence diagram Steps 3,4,5
CSCI331

Deduce object methods from
sequence diagrams

We step through the diagram, one lifeline at a time,
and study all incoming and outgoing lines:

• Arrows representing a new request being made
of an object—solid-line incoming arrows—signal
methods that the receiving object must be able
to perform

• Arrows representing responses from an operation
that some other object has performed—dashed-
line arrows— hint at the return type of the
method from which this response is being issued

Methods collected from a sequence diagram for Scenario #1

Arrow label IN /
OUT

Points to class
X

Method to be added to class X

Log on IN Student Constructor , loading data from storage

Display Schedule of
classes

IN ScheduleOfCla
sses

Collection getAllScheduledClasses()

Schedule displayed OUT Student
(actor)

GUI (not model) method

Request seat IN Section boolean enroll(Student s)

Verify plan of study IN PlanOfStudy boolean verifyPlan(Course c)

Plan of study verified IN Section -

Check prerequisite (s) IN Transcript boolean verifyCompletion(Course c)

Prerequisite confirmed OUT Section -

Check seat availability IN Section private confirmSeatAvailability()

Add to course load IN Student addSection(Section s)

Display confirmation
message

OUT Student
(actor)

GUI (not model) method

Now you can assign class
implementation to team members

Class Required public methods

Student Constructor , loading data from storage
addSection (Section s)

ScheduleOfClasses Collection getAllScheduledClasses()

Section boolean enroll(Student s)
Consists of:
• s.planOfStudy.verifyPlan (this.course)
• s.transcript.verifyCompletion(this.course.prerequisites)

PlanOfStudy boolean verifyPlan(Course c)

Transcript boolean verifyCompletion(Course c)

Section private confirmSeatAvailability()

Final UML class diagram of a SRS system

System model

• Problem statement (requirement document)

• Supporting Use-cases: general Use case
diagram with actors, high-level use cases
broken down to detailed use cases

• Sequence diagrams for all important scenarios

• UML class diagram

Testing the model

• Revisit if requirements match the final model:
to see if something is missing

• At least two formal walk-throughs with
software development team and with clients

We overlooked one sentence
The SRS will verify whether or not the proposed plan of study
satisfies the requirements of the degree that the student is seeking.

New project

We are asked to design system for Online travel
reservations for small travel agency.

They decide to enable their customers to make
travel reservations online via the Web (most of
their competitors take such requests over the
phone).

Travel agency system requirements

• For any given travel package—let’s say a ten-day trip to
Ireland—WBY offers numerous trips throughout the year.
Each trip has a maximum client capacity, so if a client can’t
get a confirmed seat for one of the trips, he or she may
request a position on a first-come, first-served wait list.

• In order to keep track of each client’s overall experience
with WBY, the travel agency plans on following up with
each client after a trip to conduct a satisfaction survey, and
will ask the client to rate his or her experience for that trip
on a scale of 1 to 10, with 10 being outstanding.

• By doing so, WBY can determine which trips are the most
successful, so as to offer them more frequently in the
future, as well as perhaps eliminating those that are less
popular. WBY will also be able to make more informed
recommendations for future trips that a given client is likely
to enjoy by studying that client’s travel satisfaction history.

This looks very familiar if we

• Substitute TravelPackage for Course

• Substitute Trip for Section

• Substitute Client for Student

• Substitute TripRecord for TranscriptEntry

• Substitute TravelHistory for Transcript

A general-purpose class diagram for
reservation system

Successful designs should be reused,
and not built from scratch

