
Modeling with objects. Part I:
structural (static) models

Lecture 23

The goal of system modeling

The goal is to render precise, concise “blueprint”
of a software system

The model is a tool of communication:

• To the client

• To the software team

• To the testing team

• To the maintenance team

Unified modeling language (UML)

• UML – a widely accepted universal notation
for describing system models

• Created by James Rumbaugh, Grady Booch,
and Ivar Jacobson (“Three amigos”) – in use
since 1997

• UML is a part of RUP (Rational Unified
Process) methodology for system modeling

Computer-Aided Software Engineering
(CASE) tools

Pro:
• Ease of use
• Automatic content generators
• Automatic code generators
• Project management tools

Contra:
• Inflexible
• May lack exporting into a vendor-neutral format
• Form over substance

Main steps of system modeling

1. Narrative problem statement (system
requirements)

2. Data modeling (static system modeling)

3. Modeling functional side (dynamic system
modeling)

4. Testing the model: is it functionally correct

1. Requirements

• Describe categories of users

• Describe situations for each user

• Subdivided into:

– Functional requirements: goal-oriented and look-
and-feel. Goal-oriented – about what system does

– Technical requirements – about how system does
it

Example: Functional requirements
(p.1/3)

Automated Student Registration System (SRS)

• Overall system goal: This system will enable students to

register online for courses each semester, as well as track a

student’s progress toward completion of his or her degree.

SRS Functional requirements (p.2/3)

• When a student first enrolls at the university, the student uses the SRS to

set forth a plan of study as to which courses he or she plans on taking to satisfy

a particular degree program, and chooses a faculty advisor.

• The SRS will verify whether or not the proposed plan of study satisfies the

requirements of the degree that the student is seeking. Once a plan of study

has been established, then, during the registration period preceding each

semester, the student is able to view the schedule of classes online, and

choose whichever classes he or she wishes to attend, indicating the preferred

section (day of week and time of day) if the class is offered by more than one

professor. The SRS will verify whether or not the student has satisfied the

necessary prerequisites for each requested course by referring to the student’s

online transcript of courses completed and grades received (the student may

review his or her transcript online at any time).

SRS Functional requirements (p.3/3)

• Assuming that (a) the prerequisites for the requested course(s) are satisfied,

(b) the course(s) meets one of the student’s plan of study requirements, and (c)

there is room available in each of the class(es), the student is enrolled in the

class(es).

• If (a) and (b) are satisfied, but (c) is not, the student is placed on a first-

come, first-served waiting list. If a class/section that the student was previously

waitlisted for becomes available (either because some other student has

dropped the class or because the seating capacity for the class has been

increased), the student is automatically enrolled in the waitlisted class, and an

email message to that effect is sent to the student. It is the student’s

responsibility to drop the class if it is no longer desired; otherwise, he or she

will be billed for the course.

• Students may drop a class up to the end of the first week of the semester in

which the class is being taught.

Formalizing requirements

• Identify actors and roles

• Identify system scope

• Generate use cases

Actors and roles

• Actor – anybody or anything which will
interact with our system

• Human users

• Other programs

SRS actors: humans

• Student

• Faculty

• Department chair

• Registrar’s office

• Alumni

• Prospective students

SRS actors: computerized systems

• Billing system

• Classroom scheduling system

• Admissions system

System scope

• Remove actors which are outside the scope of
a system

• Client decides

UML general use case diagram

A customized version:
direction of information flow

Use cases

• The logical thread of the system: a sequence
of possible events

• A use case is always initiated by an actor

• High-level use cases can be decomposed into
more detailed use cases

List all high-level use cases

Student:
• Register for a Course
• Drop a Course
• Determine a Student’s Course Load
• Choose a Faculty Advisor
• Establish a Plan of Study
• View the Schedule of Classes

Faculty:
• Request a Student Roster for a Given Course
• Request a Transcript for a Given Student
• Post Final Semester Grades for a Given Course

• Maintain Course Information (e.g., change the course description, reflect a

different instructor for the course, and so on)
• Determine a Student’s Eligibility for Graduation

Each use case can be decomposed

Register for a course:

1. Verify that a student has met the
prerequisites.

2. Check student’s plan of study to ensure that
this course is required.

3. Check for availability of a seat in the course.

4. (Optionally) Place student on a wait list.

UML specific Use case diagram

Example 1: Address book
• The software to be designed can be used to maintain an

address book. An address book holds a collection of entries,
each recording a person's first and last names, address, city,
state, zip, and phone number.

• It must be possible to add a new person to an address

book, to edit existing information about a person (except
the person's name), and to delete a person. It must be
possible to sort the entries in the address book
alphabetically by last name (with ties broken by first name
if necessary), or by ZIP code (with ties broken by name if
necessary). It must be possible to print out all the entries in
the address book in "mailing label" format.

• It must be possible to create a new address book, to open a
disk file containing an existing address book, to close an
address book, and to save an address book to a disk file.

Exercise 1

• Actors

• Scope

• Use case diagram

Example 2: Tetris game
• Tetris is a puzzle game where a user manipulates pieces composed of
square blocks, each made into a different geometric shape, that fall from
the top of the game board to the bottom where the pieces accumulate.

• The game space is displayed as a framed screen. The shapes fall down
from the top of the screen. A new piece appears after the current one
reaches the bottom of the available game space.

• While a piece is falling, the user should be able to move it sideways
and/or rotate it in order to fit it in with the accumulated pieces.

• The goal is to fill all spaces along a horizontal line. If that is
accomplished, the line is erased, points are earned, and more of the game
space is available for play.

• When a certain number of lines are cleared, the game enters a new
level. As the game progresses, each level causes the blocks to fall faster.

• If the pieces accumulate and reach the top of the screen, then the
game is over.

Static system modeling:
identifying objects

Reminder: Software objects – abstractions of
real objects and concepts: physical and
conceptual objects

Executive summary of requirements

• For modeling purposes, the long requirements
document should be transformed into an
executive summary

• The executive summary should then be
verified with the future users of the software
product

Noun phrase analysis to identify classes

List all nouns / noun phrases from requirements
document

Example: Functional requirements
(p.1/3)

Automated Student Registration System (SRS)

• Overall system goal: This system will enable students to

register online for courses each semester, as well as track a

student’s progress toward completion of his or her degree.

SRS Functional requirements (p.2/3)

• When a student first enrolls at the university, the student uses the SRS to

set forth a plan of study as to which courses he or she plans on taking to satisfy

a particular degree program, and chooses a faculty advisor.

• The SRS will verify whether or not the proposed plan of study satisfies the

requirements of the degree that the student is seeking. Once a plan of study

has been established, then, during the registration period preceding each

semester, the student is able to view the schedule of classes online, and

choose whichever classes he or she wishes to attend, indicating the preferred

section (day of week and time of day) if the class is offered by more than one

professor. The SRS will verify whether or not the student has satisfied the

necessary prerequisites for each requested course by referring to the student’s

online transcript of courses completed and grades received (the student may

review his or her transcript online at any time).

SRS Functional requirements (p.3/3)

• Assuming that (a) the prerequisites for the requested course(s) are satisfied,

(b) the course(s) meets one of the student’s plan of study requirements, and (c)

there is room available in each of the class(es), the student is enrolled in the

class(es).

• If (a) and (b) are satisfied, but (c) is not, the student is placed on a first-

come, first-served waiting list. If a class/section that the student was previously

waitlisted for becomes available (either because some other student has

dropped the class or because the seating capacity for the class has been

increased), the student is automatically enrolled in the waitlisted class, and an

email message to that effect is sent to the student. It is the student’s

responsibility to drop the class if it is no longer desired; otherwise, he or she

will be billed for the course.

• Students may drop a class up to the end of the first week of the semester in

which the class is being taught.

Elimination

• Replace plural with singular

• Sort and remove duplicates

• Remove ‘system’, context (University)

• Remove processes

• Consolidate synonyms

• Remove roles

Elimination examples

• Class, course, section

• Transcript, courses completed, grades
received

• Professor, faculty advisor

• Waitlisted class, prerequisite, requested
course

Logical
synonyms

Roles

Remaining list of potential classes
• Course
• Day of week*
• Degree*
• Email message+
• Plan of study
• Professor
• Room*
• Schedule of classes+
• Seating capacity*
• Section
• Semester*
• Student
• Time of day*
• Transcript
• (First-come, first-served) Wait list

Leave independent classes only

Test:

• Does this class have attributes?

• Does it provide services?

If no services for other classes – make them attributes:
– Room

– Day of week

– Degree

– Seating capacity

– Semester

– Time of day

Remove implementation classes: leave
domain classes only

• E-mail messages

• Schedule of classes

Survived classes

• Course

• PlanOfStudy

• Professor

• Section

• Student

• Transcript

• WaitList

Add actor classes

• Student
• Faculty
• Department chair
• Registrar’s office

• Billing system
• Classroom scheduling system
• Admissions system

Rule: if any user associated with any actor type A is going to need to
manipulate (access or modify) information concerning an actor type B
when A is logged on to the SRS, then B needs to be included as a class in
our model

Generalization with inheritance

• Course
• Section
• WaitList

• PlanOfStudy
• Transcript

• Person:

– Professor
– Student

Model dictionary (1/2)

• Course: A semester-long series of lectures,
assignments, exams, etc., that all relate to a particular
subject area, and which are typically associated with a
particular number of credit hours; a unit of study toward
a degree. For example, Web programming is a required
course for the Bachelor of Computing Science degree

• PlanOfStudy: A list of the courses that a student
intends to take to fulfill the course requirements for

a particular degree.

• Professor: A member of the faculty who teaches
sections or advises students.

Model dictionary (2/2)

• Section: The offering of a particular course during a
particular semester on a particular day of the week and at
a particular time of day.
• Student: A person who is currently enrolled at the
university and who is eligible to register for one or more
sections.
• Transcript: A record of all of the courses taken to date
by a particular student at this university, including which
semester each course was taken in, the grade received,
and the credits granted for the course, as well as a
reflection of an overall total number of credits earned
and the student’s grade point average (GPA).

Java API

These class descriptions should be put in the
header documentation of each future class:

/**

The class represents a person who is currently enrolled
at the university and who is eligible to register for one

or more sections.*/

public class Student{

UML class diagram

Example 1: Address book
• The software to be designed can be used to maintain an

address book. An address book holds a collection of entries,
each recording a person's first and last names, address, city,
state, zip, and phone number.

• It must be possible to add a new person to an address

book, to edit existing information about a person (except
the person's name), and to delete a person. It must be
possible to sort the entries in the address book
alphabetically by last name (with ties broken by first name
if necessary), or by ZIP code (with ties broken by name if
necessary). It must be possible to print out all the entries in
the address book in "mailing label" format.

• It must be possible to create a new address book, to open a
disk file containing an existing address book, to close an
address book, and to save an address book to a disk file.

Example 2: Tetris game
• Tetris is a puzzle game where a user manipulates pieces composed of
square blocks, each made into a different geometric shape, that fall from
the top of the game board to the bottom where the pieces accumulate.

• The game space is displayed as a framed screen. The shapes fall down
from the top of the screen. A new piece appears after the current one
reaches the bottom of the available game space.

• While a piece is falling, the user should be able to move it sideways
and/or rotate it in order to fit it in with the accumulated pieces.

• The goal is to fill all spaces along a horizontal line. If that is
accomplished, the line is erased, points are earned, and more of the game
space is available for play.

• When a certain number of lines are cleared, the game enters a new
level. As the game progresses, each level causes the blocks to fall faster.

• If the pieces accumulate and reach the top of the screen, then the
game is over.

Determining structural relationships
between classes

• Association

• Aggregation

• Composition

• Inheritance

Verb phrases analysis method

• Find all verb phrases that suggest structural
relationship between objects

• Ignore transient actions or behaviors

Example: Functional requirements
(p.1/3)

Automated Student Registration System (SRS)

• Overall system goal: This system will enable students to

register online for courses each semester, as well as track a

student’s progress toward completion of his or her degree.

SRS Functional requirements (p.2/3)

• When a student first enrolls at the university, the student uses the SRS to

set forth a plan of study as to which courses he or she plans on taking to satisfy

a particular degree program, and chooses a faculty advisor.

• The SRS will verify whether or not the proposed plan of study satisfies the

requirements of the degree that the student is seeking. Once a plan of study

has been established, then, during the registration period preceding each

semester, the student is able to view the schedule of classes online, and

choose whichever classes he or she wishes to attend, indicating the preferred

section (day of week and time of day) if the class is offered by more than one

professor. The SRS will verify whether or not the student has satisfied the

necessary prerequisites for each requested course by referring to the student’s

online transcript of courses completed and grades received (the student may

review his or her transcript online at any time).

transient

Association matrix
Section Course PlanOfStudy Professor Student Transcript

Section x instance
of

x is taught by is taught
for

included in

Course includes prerequis
ite for

included into x v x

PlanOfStudy x calls for x x set up by x

Professor teaches x x x advises,
teaches

x

Student registere
d for

plans to
take

observes is advised by,
studies
under

x owns

Transcript includes x x x belongs to x

Representing structural relationships
between classes

Example: advises relationship

Binary
relationship
(between two
different classes)

Example: prerequisite relationship

Unary relationship

Aggregation and composition

Inheritance

Associations are inherited

Reflecting multiplicity

Directions: who initiates conversation

Exercise: multiplicity

Instance variables depict associations

public class Course {
 // Attributes.
 // a collection of Section object handles
 private Collection offeredAs;
}

public class Section {
 // Attributes.
 // a handle on the related Course object
 private Course representedCourse;
}

1 to many

Association classes

• Where do we put gradeReceived?

Association classes

Final static class diagram

Object (instance) diagrams

