
Java IO. Part I. Files and Streams

Lecture 21

Java IO package
• Different sources and sinks of I/O:

– files

– console

– network …

• You need to talk to them in a variety of ways:
– sequential

– random-access

– buffered

– binary

– character

– by lines …

• Result: 12 interfaces, 50 classes, 16 exceptions

Main utilities of java.io

• File manipulation

• Stream manipulation

• Serializing objects

Manipulating files: The File class

• The File class can represent either the name
of a particular file or the names of a set of files
in a directory.

• For a set of files use the list() method, which
returns an array of Strings.

Listing all files (and directories) in a
current directory

public static void main(String[] args)
{
 File path = new File(“.");
 String[] list;

 list = path.list();

 Arrays.sort(list, String.CASE_INSENSITIVE_ORDER);

 for(String dirItem : list)
 System.out.println(dirItem);
}

Current
directory

comparator

Listing all .java files

public static void main(String[] args){

 File path = new File("../");

 String[] list;

 list = path.list(new DirFilter(“.*\.java”));

}

Parent
directory

FilenameFilter interface

class DirFilter implements FilenameFilter
{
 private Pattern pattern;
 public DirFilter(String regex) {
 pattern = Pattern.compile(regex);
 }

 public boolean accept (File dir, String name) {
 return pattern.matcher(name).matches();
 }
}

Parent directory

Name of the
file to be
accepted or
rejected

Strategy design pattern example

public static void main(String[] args){

 File path = new File("../");

 String[] list;

 list = path.list(new DirFilter(“.*\.java”));

}

Matching strategy:
part of a list()
implementation

Digression: Regular expressions

• Regular expressions allow to specify,
programmatically, complex patterns of text that
can be discovered in an input string.

• A regular expression is a way to describe strings
in general terms, so that you can say, "If a string
has these things in it, then it matches what I’m
looking for."

• A complete list of constructs for building regular
expressions can be found in the documentation
for the Pattern class in package java.util.regex.

Regular expression example 1

D.*\.java

Starts with D

Regular expression example 1

D.*\.java

any character

repeated 0 or
more times

Regular expression example 1

D.*\.java

Actual dot (with
escape sequence)

Regular expression example 2

[gc].*
Starts with g OR c

Regular expression example 3

[rR]udolph

[rR][aeiou][a-z]ol.*

R.*

• Which of these will match Rudolph?

How to use java regular expressions

• Import java.util.regex
• Compile a regular expression by using the static

Pattern.compile() method. This produces a Pattern object
based on its String argument.

• Use the Pattern by calling its matcher() method, passing
the string that you want to search. The matcher() method
produces a Matcher object

Pattern p = Pattern.compile(regexpression);
Matcher m = p.matcher(inputstring);
• Call methods of Matcher:
m.matches() //boolean

Info about the file
public static void printFileData(File f) {
 System.out.println(
 "Absolute path: " + f.getAbsolutePath() +
 "\n Can read: " + f.canRead() +
 "\n Can write: " + f.canWrite() +
 "\n getName: " + f.getName() +
 "\n getParent: " + f.getParent() +
 "\n getPath: " + f.getPath() +
 "\n length: " + f.length() +
 "\n lastModified: " + f.lastModified());

 if(f.isFile())
 System.out.println("It’s a file");
 else if(f.isDirectory())
 System.out.println("It’s a directory");
}

created text2
Absolute path:
C:\Users\MGbarsky\workspa
ce\ioexamples\text2
 Can read: true
 Can write: true
 getName: text2
 getParent: null
 getPath: text2
 length: 0
 lastModified:
1352190726996
It’s a directory

We can use the File class to rename,

File old = new File(args[1]), rname = new File(args[2]);

old.renameTo(rname);

We can use the File class to rename,
delete

File f = new File(args[1]);

if(f.exists()) {

 System.out.println("deleting..." + f);

 f.delete();

}

We can use the File class to rename,
delete, or create new directories

File f = new File(args[1]);

f.mkdirs();

System.out.println("created " + f);

Main utilities of java.io

• File manipulation

• Stream manipulation

• Serializing objects

Input and output streams

• The abstraction of a stream represents any data
source or sink as an object capable of producing or
receiving pieces of data.

• The stream hides the details of what happens to the
data inside the actual I/O device

Application

… b b b b b b b b b …

… b b b b b b b b b …

… b b b b b b b b b …

… b b b b b b b b b …

Input Streams Output Streams

Digression: Decorator design pattern

• Design Purpose: the use of layered objects to
dynamically and transparently add responsibilities to
individual objects

• Design Pattern Summary: provides a nested linked
list of objects, each encapsulating its own
responsibility.

Decorator UML diagram

• The decorator pattern
specifies that all objects
that wrap around your
initial object have the same
interface.

• This makes the basic use of
the decorators
transparent—you send the
same message to an object
whether it has been
decorated or not.

Coffee decorators example

CoffeeElement
getCost()

DarkRoast
getCost()

Milk
CoffeeElement decoratedObj
getCost()

Mocha
CoffeeElement decoratedObj
getCost()

Whip
…

CoffeeDecorator
Espresso
getCost()

Decaf
getCost()

Coffee decorators example

CoffeeElement
getCost()

DarkRoast
getCost()

Milk
CoffeeElement decoratedObj
getCost()

Mocha
CoffeeElement decoratedObj
getCost()

Whip
…

CoffeeDecorator
Espresso
getCost()

Decaf
getCost()

Nested decorators (1/3)

First, create a core coffee element:

CoffeeElement dark=new DarkRoast();

DarkRoast

getCost()

Nested decorators (2/3)

Wrap it with Mocha, pass DarkRoast to be decorated

Mocha whip=new Mocha (new DarkRoast());

DarkRoast

getCost()

Mocha

getCost()

Nested decorators

Wrap it with Whip, pass Mocha to be decorated

CoffeeElement whip=new Whip(new Mocha(new DarkRoast()));

DarkRoast

getCost()

Mocha

getCost()
Whip

getCost()

Each CoffeeElement has getCost()

public class Whip extends CoffeeDecorator{

 CoffeeElement decoratedObj;

 public double getCost(){

 return 0.50 + decoratedObj.getCost();

 }

}

Subclass of
CoffeeElement

Its own
cost

To compute the total beverage cost: call the
getCost() of the outmost decorator

CoffeeElement beverage=new Whip(

 new Mocha (

 new DarkRoast()));

cost=beverage.getCost();

This recursively adds costs of all
elements

getCost()

Mocha

getCost()

Whip

getCost()

call

return
0.99+0.50

return
0.99+0.50+0.20

Favor composition over inheritance

• When we compose a decorator with a component,
we are adding new behavior. We are acquiring new
behavior not by inheriting it from a superclass, but
by composing objects together.

• Because we are using object composition, we get a
lot more flexibility about how to mix and match
condiments and beverages.

The decorator design pattern:
summary

• We can create endless combinations from basic
decorators into an object with complex behavior

• We are changing the structure (and the functionality)
of an object

• We can write new decorators to enable new
behavior, and we do not need to change the old
classes

• This demonstrates “open for extension, closed for
modification” design principle

Back to java.io: Input Streams
Inheritance tree

InputStream
read()

FileInputStream

BufferedInputStream DataInputStream LineNumberInputStream

FilterInputStream StringBufferInputStream
ByteArrayInput

Stream

Abstract
decorator

There are four main inheritance
hierarchies with decorators

Read-write byte streams

• InputStream

• OutputStream

Read-write character streams (Unicode, 16 bit)

• Reader

• Writer

All mirror the Decorator pattern design

Abstract Decorator class in java.io

• The classes that provide the decorator interface to control a
particular InputStream or OutputStream are the
FilterInputStream and FilterOutputStream

• They are derived from the base classes of the I/O library,
InputStream and OutputStream, which is the key
requirement of the decorator (so that it provides the common
interface to all the objects that are being decorated).

Concrete decorators for InputStreams

The FilterInputStream subclasses:

• DataInputStream allows you to read different types of primitive
data and String objects. (readByte(), readFloat(), etc.)
(corresponds to DataOutputStream for an output)

The remaining classes modify the way an InputStream behaves
internally:

• Whether it’s buffered - BufferedInputStream

• if it keeps track of the lines it’s reading LineNumberInputStream

• …

Concrete decorators for OutputStreams

• The complement to DataInputStream is
DataOutputStream (writeByte(), writeFloat(), etc.)

• PrintStream prints primitive data types and String
objects in a viewable format (print() and println() are
overloaded to print all the various types).

• BufferedOutputStream tells the stream to use buffering
so you don’t get a physical write every time you write to
the stream. You’ll probably always want to use this
when doing output.

Reader and Writer hierarchies:
reading/writing 16-bit Unicode Strings

Since Unicode is used for internationalization (and
Java’s native char is 16-bit Unicode), the Reader and
Writer hierarchies were added to support Unicode in
all I/O operations.

Example 1. Reading input by lines

BufferedReader in = new BufferedReader(

 new FileReader("IOStreamDemo.java"));

String s, s2 = new String();

while((s = in.readLine())!= null)

 s2 += s + "\n";

in.close();

Example 2. Reading standard input

BufferedReader stdin = new BufferedReader(

 new InputStreamReader(System.in));

System.out.print("Enter a line:");

System.out.println(stdin.readLine());

Example 3. Input from memory

String s2=“abc”;

StringReader in2 = new StringReader(s2);

int c;

while((c = in2.read()) != -1)

 System.out.print((char)c);

Example 4. File output
try {
 BufferedReader in4 = new BufferedReader(
 new StringReader(s2));
 PrintWriter out1 = new PrintWriter(
 new BufferedWriter(
 new FileWriter("IODemo.out")));

 int lineCount = 1;

 while((s = in4.readLine()) != null)
 out1.println(lineCount++ + ": " + s);
 out1.close();
 } catch(EOFException e) {
 System.err.println("End of stream");
 }

Example 5. Storing and recovering data
DataOutputStream out2 = new DataOutputStream(
 new BufferedOutputStream(
 new FileOutputStream("Data.txt")));
out2.writeDouble(3.14159);
out2.writeUTF("That was pi");
out2.close();

DataInputStream in5 = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("Data.txt")));

 // Must use DataInputStream for data:
 System.out.println(in5.readDouble());
 // Only readUTF() will recover the Java-UTF String properly:
 System.out.println(in5.readUTF());

Example 6. Reading and writing to
standard input/output

BufferedReader in = new BufferedReader(

 new InputStreamReader(System.in));

 String s;

 while((s = in.readLine()) != null && s.length() != 0)

 System.out.println(s);

 // An empty line or Ctrl-Z terminates the program

 }

}

Example 7. Redirect standard output
PrintStream console = System.out; //set console to restore later

BufferedInputStream in = new BufferedInputStream(
 new FileInputStream("Redirecting.java"));

PrintStream out = new PrintStream(
 new BufferedOutputStream(
 new FileOutputStream("test.out")));

System.setIn(in);
System.setOut(out);
System.setErr(out);

BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in));
String s;
while((s = br.readLine()) != null)
 System.out.println(s);
out.close(); // Remember this!

System.setOut(console); //restore

Example 8. Our own new I/O decorator
public class LowerCaseInputStream extends FilterInputStream {
 public LowerCaseInputStream(InputStream in) {
 super(in);
 }

 public int read() throws IOException {
 int c = super.read();
 return (c == -1 ? c : Character.toLowerCase((char)c));
 }

 public int read(byte[] b, int offset, int len) throws IOException {
 int result = super.read(b, offset, len);
 for (int i = offset; i < offset+result; i++)
 b[i] = (byte)Character.toLowerCase((char)b[i]);
 return result;
 }
}

Summary of stream manipulation

• Using the decorator design pattern, we can create a
nested combination of Stream readers/writers
suitable for our needs

• We wrap the core elements, which extend directly
from a top abstract class, with the decorator classes,
which extend decorator abstract class (Filter abstract
classes, for example)

Why decorators in java.io

• Decorators are often used when simple subclassing
results in a large number of classes in order to satisfy
every possible combination that is needed

• The Java I/O library requires many different
combinations of features, and this is the justification
for using the decorator pattern

• Decorators give you much more flexibility while
you’re writing a program (since you can easily mix
and match attributes), but they add complexity to
your code.

Decorator pattern: downsides

• Designs often result in a large number of small
classes that can be overwhelming to a client
programmer.

• The reason that the Java I/O library is awkward to
use is that you must create many classes—the “core”
I/O type plus all the decorators—in order to get the
single I/O object that you want

• But now that you know how Decorator works, you
can keep things in perspective and use wrapping to
get the behavior you want.

Main utilities of java.io

• File manipulation

• Writing and reading of Streams

• Serializing objects

