
Risky behavior. Java exceptions

Lecture 20

• Even the most carefully designed system may
fail:

– The file isn’t there

– The server is down

– …

• When you write a risky method, you need
code to handle the bad things that might
happen

The general idea

You want to call a method in a class that you did
not write

You

your code class you
didn’t write

write that uses method in

The general idea

That method does something risky – might not
work at runtime

You

your code class you
didn’t write

write that uses method in


~~~
~~~
~~~

~ 
class you 
didn’t write 

void moo () { 
    if (serverDown){ 
        explode(); 
    } 
} 



The general idea 

You need to know whether the method is risky 

----- 
----- 
----- 

You 

your code class you 
didn’t write 

write that uses method in 

You 

class you 
didn’t write 

Can your method 
blow up? 



The general idea 

You need to know whether the method is risky 

----- 
----- 
----- 

You 

your code class you 
didn’t write 

write that uses method in 

You 

class you 
didn’t write 

My moo() will 
explode if the 
server is down 



The general idea 

Then you can write code that can handle the 
failure if it happens 

----- 
----- 
----- 

You 

your code class you 
didn’t write 

write that uses method in 

You 

Now that I 
know I can take 

precautions 

----- 
----- 
----- 

your code 

write 
safely 



How to know that method throws 
exceptions 

You find a throws clause in the 
risky method’s declaration 



Example: BufferedReader readLine() 

java.io 

Class BufferedReader 
 

public String readLine() 
                throws IOException 
 
    Read a line of text. A line is considered to be terminated by any one of a 
line feed ('\n'), a carriage return ('\r'), or a carriage return followed 
immediately by a linefeed. 
 
    Returns: 
        A String containing the contents of the line, not including any line-
termination characters, or null if the end of the stream has been reached  
    Throws: 
        IOException - If an I/O error occurs 

 



Try/catch block 

try { 

 //do risky thing 

} catch (Exception e) { 

 //try to recover 

} 

 

What to write in a catch block depends on the 
exception. If a server is down, you may try another 
server. If the file is not there, you may try to ask a user 
for a new location 

It is like declaring a 
method argument 

This code only runs 
if an Exception is 
thrown 



try/catch block example 
If you wrap the method which throws exception with try/catch block, then this tells 
compiler that you know: an exceptional thing may happen and you are prepared to 
handle it 

 

import javax.sound.midi.*; 

public class MusicTest { 

 public void play() { 

  try { 

      Sequencer sequencer =  

    MidiSystem. getSequencer(); 

      System.out.println(“Successfully got a  
       sequencer”); 

  } catch(MidiUnavailableException ex) { 

      System.out.println(“Bummer”); 

  } 

 } 

} 



try/catch block example 
If you wrap the method which throws exception with try/catch block, then this tells 
compiler that you know: an exceptional thing may happen and you are prepared to 
handle it 

 

import javax.sound.midi.*; 

public class MusicTest { 

 public void play() { 

  try { 

      Sequencer sequencer =  

    MidiSystem. getSequencer(); 

      System.out.println(“Successfully got a  
       sequencer”); 

  } catch(MidiUnavailableException ex) { 

      System.out.println(“Bummer”); 

  } 

 } 

} 

Catches an exception 
which may be thrown 
from getSequencer() 
method 



An Exception is an object  
of type Exception 

• It can be an instance of 
any subclass of Exception 

• All exceptions inherit two 
key methods 

Throwable 
 

getMessage() 
printStackTrace() 

Exception 
 
 
 

InterruptedException 
 
 
 

IOException 
 
 
 



Declaring an exception 

Risky, exception-throwing code: 
public void takeRisk() throws BadException{ 
 if (abandonAllHope) { 
  throw new BadException(); 
 } 
} 
 
The code that calls the risky method: 
public void crossFingers(){ 
    try { 
        anObject.takeRisk(); 
    } catch (BadException e) { 
        System.out.println(“Aaargh!”); 
        e.printStackTrace(); 
    } 
} 
 
 

Create a new Exception 
object and throw it 

This method MUST to declare 
that it throws a BadException 



The compiler guarantees: 

• If you throw Exception in your code, then you 
must declare it using the throws keyword in 
your method declaration 

• If you call a method that throws an Exception, 
you must acknowledge that you are aware of 
the Exception possibility: 

– Try/catch block 

– Re-throw Exception 



The compiler checks only  
“checked exceptions” 

RuntimeExceptions are NOT checked 
by the compiler. You can throw, catch 
and declare, but you don’t have to 

Exception 
 

IOException 
 

InterruptedException 
 

RuntimeException 
 

ClassCastException 
 

NullPointerException 
 

Any subclass of Exception except 
RuntimeException and its subclasses 



Examples: RuntimeException 
ArithmeticException: an exceptional arithmetic situation has arisen, 

such as integer division with zero divisor. 

 

ClassCastException: attempt made to cast reference to an 
inappropriate type. 

 

IllegalArgumentException: method invoked with invalid or 
inappropriate argument, or inappropriate object. 

 

NullPointerException: attempt to use a null reference in case where 
an object reference was required. 

 

SecurityException: a security violation was detected. 



You WANT RuntimeExceptions to happen 

• Most RuntimeExceptions come from a 
problem in your code logic 

• You should make sure  
– that array index is not out of bound 

– that you do not try to call methods on null 

– that you do not divide by zero 

• You don’t want to catch and recover from 
something which should not happen in the 
first place 



Bullet points 

• A method can throw an exception if something fails at 
runtime 

• An exception is always an object of type Exception 
• The compiler does not pay attention to exceptions 

which are of type RuntimeException 
• A method throws an exception using keyword throw 
• A method that may throw a checked exception must 

announce this with a throws Exception declaration 
• If your code calls the method that throws an Exception, 

it must reassure the compiler that the precautions 
have been taken: 
– Handle with try/catch 
– Re-throw  



Flow control in try/catch block 
try  
{ 
 Foo f = x.doRiskyThing(); 
 int b = f.getNum(); 
} catch (Exception ex)  
{ 
 System.out.println(“failed”); 
} 
System.out.println(“We made it!”); 

try  
{ 
 Foo f = x.doRiskyThing(); 
 int b = f.getNum(); 
} catch (Exception ex)  
{ 
 System.out.println(“failed”); 
} 
System.out.println(“We made it!”); 

1 

2 

If the try 

succeeds 

1 

2 

2 

If the try 

fails 



Flow control excercise 

1. try { 
2.  i=i/i; 
3.  j=0; 
4.  name=s.name(); 
5.  j=1; 
6. } catch (ArithmeticException e) {  
7.  j=3; } 
8. } catch (NullPointerException e) { 
9.   j=4; } 
10. } catch (Exception e) { 
11.  j=5;} 
12. System.out.println (j) ; 
 

Case 1: i!=0, s != null 

Case 2: i=0 

Case 3: i!=0, s=null 



Finally: for the things you want to do 
no matter what 

try { 

 turnOvenOn(); 

 x.bake(); 

} catch (BakingException ex) { 

 ex.printStackTrace(); 

} finally { 

 turnOvenOff(); 

} Here you put the 
code that must 
run regardless of 
an exception 



Why do we need to clean resources 
when Java has garbage collector 

The finally clause is necessary when we need to 
set something other than memory back to its 
original state: like an open file or network 
connection  

 



The method can throw more than 1 exception 

public class Laundry { 
    public void doLaundry() throws PantsException, LingerieException { 
 // code that could throw either exception 
    } 
} 
 
public class Foo { 
    public void go() { 
        Laundry laundry = new Laundry(); 
        try { 
             laundry.doLaundry(); 
         } catch(PantsException pex) { 
                   //pants recovery code 
         } catch(LingerieException lex) { 
                  // lingerie recovery code 
         } 
    } 
} 



Exceptions are polymorphic 

You can declare exceptions using a 
supertype of the exceptions you throw 
public void doLaundry ()  

 throws ClothingException 

 

You can catch exceptions using a 
supertype of the exception thrown 

 
try {  

 laundry.doLaundry(); 

}catch (ClothingException e) 

Exception 
 

IOException 
 

ClothingException 
 

PantsException 
 

TeeShirtException 
 

ShirtException 
 

DressShirtException 
 



Good practice: 
Write a separate catch block for each 

unique exception 
try { 

    laundry.doLaundry(); 

} catch(TeeShirtException tex) { 

   // recovery from TeeShirtException 

} catch(PantsException lex) { 

   // recovery from LingerieException 

} catch(ClothingException cex) { 

   // recovery from all others 

} 

TeeShirtException and 
PantsException need 
different recovery code, 
so we use different catch 
block 

All other 
ClothingExceptions 
are caught here 



Multiple catch blocks must be ordered 
from smallest to biggest 

• The higher up in the inheritance tree, 
the bigger the catch “basket” 

• The biggest of all catch arguments is 
type Exception: it will catch any 
exception, including RuntimeException, 
so we do not generally use Exception 
type outside the program testing 

• You can’t put bigger baskets above 
smaller baskets (it won’t compile) 

• Siblings can be in any order, because 
they can’t catch one another’s 
exceptions 



Re-throwing an exception 

• When you don’t want to handle an exception, 
just re-throw it 

• For this, declare that your method throws the 
same type of Exception 

• Let the method that calls YOU catch the exception 

 
public void foo() throws ReallyBadException(){ 

//can call risky method without try/catch 

laundry.doLaundry(); 

} 

 



What is happening on the stack 

• If you do not catch an exception, then what 
happens if the risky method does throw an 
exception? 

• When the method throws an exception, this 
method is popped off the stack immediately, and 
the exception is thrown to the next method on 
the top of the stack – the caller.  

• But if the caller re-throws the exception, so the 
caller pops off the stack, and the exception is 
thrown to the next method and so on … where 
does it end? 



Re-throwing an exception only delays 
inevitable 

public class Washer { 
   Laundry laundry=new Laundry(); 
 
   public void foo() throws ClothingException { 
      laundry.doLaundry(); 
   } 
 
   public static void main (String [] args)  
  throws ClothingException { 
      Washer a=new Washer(); 
      a.foo(); 
   } 
} 

Risky method that throws ClothingException 



Stack 

main 

foo 

doLaundry 

main() calls foo() 

foo() calls doLaundry() 

doLaundry() is 
running and throws a 
ClothingException 

main 

foo 

doLaundry() pops off 
the stack and the 
exception is thrown 
back to foo() 
 
But foo() does not 
have try/catch, so… 

main 

foo() pops off the 
stack and the 
exception is thrown 
back to main() 
 
But main() does not 
have try/catch, and 
nobody left but JVM 

doLaundry() throws a 
ClothingException 

foo() re-throws the 
exception 

main() re-throws 
the exception 

The JVM 
shuts 
down 

1 2 3 4 

THE 
END 



Handle or declare. It’s the law 

• Handle: wrap the risky method in a try/catch 
block 

• Declare: declare that your method throws the 
same exception as the risky method you are 
calling 



Java Error class 

Exception subclasses 
represent errors that a 
program can reasonably 
recover from -errors that 
are expected to occur in 
the normal course of duty 



Java Error class 

RuntimeExceptions are 
exceptions that a program 
shouldn't generally expect 
to occur, but could 
potentially recover from. 
They are likely to be 
programming errors 



Java Error class 

Error subclasses represent 
"serious" errors that a program 
generally shouldn't expect to 
catch and recover from. (an 
expected class file being 
missing, a StackOverflow, an 
OutOfMemoryError).  



When (not) to use Exceptions 

• Connect to a remote server 

• Access an array beyond its length 

• Display a window on the screen 

• Get an input from the user 

• Retrieve data from the database 

• See if a text file is where you think it is 

• Create a new file 

 

 



Example: using exceptions 

public static void placeShip( 

 Board board, Ship ship)  

 throws Exception 

{ 

 ….  

tries--; 

if (tries < 1) { 

Exception e = new Exception("Could not  

     place ship"); 

throw e; 

} 



Example: using exceptions 

try { 

 AI.placeShip(board,    

     board.ships[i]); 

}catch (Exception e) { 

 System.out.println(e.getMessage()); 

 System.out.println("Returning  

     to main menu."); 

 return; 

} 


