
Java GUI. Part II

Swing components

Once you have a JFrame -
you can add Swing JComponents to its pane (getContentPane()):

• Button

• RadioButton

• CheckBox

• Label

• List

• ScrollPane

• Slider

• TextArea

• TextField

• Table

J

Components can be nested

• Virtually all JComponents are capable to hold inside
other components, you can stick just anything into
anything else

• Most of the time we add interactive components
(Buttons, Menus, Text boxes) into a background
component (Panels, Scrollable panels)

• But even a JPanel can be used as an interactive
component

Container

Container is a Component that can contain other components and
containers.

has

JComponent


Component

Container

Intermediate containers

Used to organize and position other components.

• JPanel used for collecting other components.

• JScrollPane provides view with scroll bars.

• JSplitPane divides two components graphically.

• JTabbedPane lets the user switch between a group
of components by clicking on a labeled tab.

JFrame
is a window with title, border, (optional) menu bar and
user-specified components.

It can be moved, resized, iconified.

JFrame internal structure

A Swing Frame has a fairly complicated structure, with several
panes. Some of these are used to implement pluggable look-
and-feel.

JFrame

JFrame

is not a subclass of JComponent

JFrame

• JFrame delegates responsibility of managing user-specified
components to a content pane, an instance of JPanel.

• To add a component to a JFrame, add it to its content pane:

JFrame f = new JFrame("A Frame");

JButton b = new JButton("Press");

Container cp = f.getContentPane();

cp.add(b)

Heavyweight and lightweight
components

• Heavyweight components
– Instances of classes JApplet, JDialog, JFrame, and

JWindow.
– Created by association to a native GUI component

part of the native windowing system.
– Their look and feel depends on the native GUI

component.

• Lightweight components
– Any other Swing component.
– They are completely implemented in Java.

Sequential/Concurrent programming (1/2)

• A thread is a sequence of instructions being executed
by the processor.

• Sequential programming: So far programs consisted
of a single thread, which executes the sequence of
actions in the main method (main thread).

• Concurrent programming: A program can contain
several threads each executing independent
sequences of actions.

Sequential/Concurrent programming (2/2)

• Event-dispatching thread: executes all the code that
involves repainting components and handling events.

• After the JFrame has been made visible, the main
thread should not perform actions that affect or
depend on the state of the user interface.

LayoutManager

• Responsible for positioning and sizing
components added to a container.

• Each container is associated with a
LayoutManager.

• Setting and accessing Container’s layout manager:

public LayoutManager getLayout();

public void setLayout (LayoutManager manager);

LayoutManager classes (1/2)

• FlowLayout lays out components left to right, top
to bottom.

• BorderLayout lays out up to five components,
positioned “north,” “south,” “east,” “west,” and “center.”

• GridLayout lays out components in a two-
dimensional grid.

• CardLayout displays components one at a time
from a preset deck of components.

LayoutManager classes (2/2)

• GridBagLayout lays out components vertically
and horizontally according to a specified set of
constraints.

• BoxLayout lays out components in either a
single horizontal row or single vertical column.

• OverlayLayout components are laid out on top
of each other.

Understanding Layout manager
policies

• Each background container may have its own
layout manager

• To avoid frustration, it is useful to understand
how each layout manager follows its own
policy on determining the position and the
size of components it contains

Example: how the layout manager
decides

A layout scenario: make a panel and add 3 buttons to it
• The panel’s layout manager asks each button how big it

prefers to be: getPreferredSize()
• The layout manager of JPanel uses its policies to decide

whether it should respect all, part, or none of its
buttons’ preferences

• Add the panel to JFrame:
• JFrame’s layout manager asks the panel about its

preferred size, and then decides according to its layout
manager whether to respect the panel’s preferences or
ignore them.

Three main layout managers

• Border

• Flow

• Box

Border layout

• Divides a background container into 5 regions

• You can add only one component per region to a
background controlled by BorderLayout manager

• Components don’t get to have their preferred size

JFrame’s content pane default layout manager:
BorderLayout.

Flow layout

• Each component is the size it wants to be

• The components are laid out left-to-right in
the order they are added

• When the next component would not fit
horizontally, it drops to the next “line”

JPanel’s default layout manager: FlowLayout.

Box layout

• Each component gets to have its preferred size

• The components are stack vertically (or
horizontally) one above the other

• Each new component is forced to start a new
“line”

Border layout

The background container is
divided into 5 regions

West

South

North

East Center

JFrame frame = new JFrame();
JButton button = new JButton(“click me”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);
frame.setVisible(true);

Border layout example 1

How the layout manager come up with these dimensions for the
button?

JFrame frame = new JFrame();
JButton button = new JButton(“click me”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);
frame.setVisible(true);

Border layout example 2

JFrame frame = new JFrame();
JButton button = new JButton(“click like you mean it”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);
frame.setVisible(true);

Border layout policy

Border layout manager

Since it is in the East region,
I respect its preferred width.
I don’t care how tall it wants

to be: it will be as tall as a
frame. THIS IS MY POLICY

Border layout example 3
JFrame frame = new JFrame();
JButton button = new JButton(“There is no spoon...”);
frame.getContentPane().add(BorderLayout.NORTH, button);
frame.setSize(200,200);
frame.setVisible(true);

Border layout example 4

JFrame frame = new JFrame();
JButton button = new JButton(“Click This!”);
Font bigFont = new Font(“serif”, Font.BOLD, 28);
button.setFont(bigFont);
frame.getContentPane().add(BorderLayout.NORTH, button);
frame.setSize(200,200);
frame.setVisible(true);

the center gets whatever is left

Border layout summary example

JFrame frame = new JFrame();
JButton east = new JButton(“East”);
JButton west = new JButton(“West”);
JButton north = new JButton(“North”);
JButton south = new JButton(“South”);
JButton center = new JButton(“Center”);
frame.getContentPane().add(BorderLayout.EAST, east);
frame.getContentPane().add(BorderLayout.WEST, west);
frame.getContentPane().add(BorderLayout.NORTH, north);
frame.getContentPane().add(BorderLayout.SOUTH, south);
frame.getContentPane().add(BorderLayout.CENTER, center);
frame.setSize(300,300);
frame.setVisible(true);

Flow layout example:
panel with 2 buttons (1/3)

Adding a panel to the East region of JFrame

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
frame.getContentPane().add(BorderLayout.EAST, panel);
frame.setSize(200,200);
frame.setVisible(true);

Flow layout example:
panel with 2 buttons (2/3)

Adding a button to the panel

JButton button = new JButton(“shock me”);
panel.add(button);
frame.getContentPane().add(BorderLayout.EAST, panel);

Flow layout example:
panel with 2 buttons (3/3)

Adding two buttons to the panel

JButton button = new JButton(“shock me”);
panel.add(button);
JButton buttonTwo = new JButton(“bliss”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

What do you expect to happen?

Flow layout example:
panel with 2 buttons (3/3)

Adding two buttons to the panel

JButton button = new JButton(“shock me”);
panel.add(button);
JButton buttonTwo = new JButton(“bliss”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

Box layout example:
panel with two buttons

JPanel panel = new JPanel();

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
JButton button = new JButton(“shock me”);
panel.add(button);
JButton buttonTwo = new JButton(“bliss”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

Component layout summary

Event-driven programs

Two main interaction patterns between the program and the
environment:

• Algorithm-driven: the program determines what information
it needs and when to get it (text-based interfaces). Active
application

• Event-driven: the application waits for something to happen
in the environment - it waits for an event, responds to this
event and then waits for the next event (Graphical User
Interfaces). Passive application.

Events and components

• Events are objects.

• Events: subclasses of abstract class java.awt.AWTEvent.

• Components generate events.

• An event object knows event source and other relevant
information about the event.

• Given an event, to query for its component’s source:

public Object getSource();

Listener or Event handler

• Listener: An object interested in being notified when an
event occurs in a given component.

• A Listener object registers with a component to be notified
of events generated by it.

• Listener must implement the event listener interface
associated with events for which it registered.

• Programming a handler for an event consists of
implementing the interface associated with the event type.

General approach to GUI design

Program an application that displays a button. When
the button is pressed, its foreground and background
colors are swapped.

• Design: extend the class JFrame with OnOffSwitch,
and its constructor builds the frame containing the
button.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;
class OnOffSwitch extends JFrame {

 public OnOffSwitch () {
 super("On/Off Switch"); // frame title
 JButton button = new JButton("On/Off");
 button.setForeground(Color.black);
 button.setBackground(Color.white);

 this.getContentPane().add(button,
 BorderLayout.CENTER);
}

}//end of OnOffSwitch

public class OnOffTest {
 public static void main (String[] args) {
 OnOffSwitch frame = new OnOffSwitch();
 frame.setSize(300,200);
 frame.setVisible(true);
 }
}

Program does not work

• Pressing the button has no effect at all.

• When the button is pressed, it generates an
ActionEvent.

• We need to program the response to that event.

Programming an ActionListener for
JButton

• Implement a listener to handle event generated
by JButton instance.

• If user presses button, it generates an
ActionEvent.

• To do:
– Define a class, Switcher, that implements ActionEvent.
– Register an instance of Switcher with the JButton

instance.

Revision of OnOffSwitch to create a Switcher listener
and register it with JButton

public OnOffSwitch () {
 super("On/Off Switch"); // frame title

 // create button and set its colors
 JButton button = new JButton("On/Off");
 button.setForeground(Color.black);
 button.setBackground(Color.white);

 // create and register button’s listener:
 button.addActionListener(new Switcher());

 // add button to JFrame’s content pane:
 this.getContentPane().add(
 button, BorderLayout.CENTER);

}

Switcher ActionListener

class Switcher implements ActionListener {

 public void actionPerformed (ActionEvent e) {

 Component source = (Component)e.getSource();

 Color oldForeground = source.getForeground();

 source.setForeground(source.getBackground());

 source.setBackground(oldForeground);

 }

}

JFrame close event

• To terminate the program need to program a
window listener to close the window.

• A window listener must implement the 7
methods in WindowListener interface.

• We only want to implement 2 of those methods:
void windowClosed (WindowEvent e)

void windowClosing (WindowEvent e)

Adapter classes: WindowAdapter

• Java provides a collection of abstract event
adapter classes.

• These adapter classes implement listener
interfaces with empty, do-nothing methods.

• To implement a listener class, we extend an
adapter class and override only methods
needed.

Terminator class

//implements window events to close a window

class Terminator extends WindowAdapter {

 public void windowClosing(WindowEvent e) {
 Window w = e.getWindow();
 w.dispose();
 }

 public void windowClosed(WindowEvent e) {
 System.exit(0);
 }
}

Create a new instance of Terminator
and register with JFrame

public OnOffSwitch () {
 super("On/Off Switch"); // frame title
 this.addWindowListener(new Terminator());

 // create button and set its colors
 JButton button = new JButton("On/Off");
 button.setForeground(Color.black);
 button.setBackground(Color.white);

 // create and register button’s listener:
 button.addActionListener(new Switcher());

 // add button to JFrame’s content pane:
 this.getContentPane().add(
 button, BorderLayout.CENTER);
}

Reminder: Timer action listener
 BouncingBallAnimationListener(SimpleShape shape,

 int step, JFrame window) {}

public void actionPerformed(ActionEvent e) {

 if(shape.getX()+shape.getWidth()+this.step >= this.maxBoundX)

 signX=-1; //reached the end of X axis, reverse X direction

 else if (shape.getX() -this.step<=0)

 signX=1; //reached the beginning of X axis, reverse X direction

 if(shape.getY()+shape.getHeight()+this.step >= this.maxBoundY)

 signY=-1; //reached the end of Y axis, reverse Y direction

 else if (shape.getY() -this.step<=0)

 signY=1; //reached the beginning of Y axis, reverse Y direction

 shape.changeLocation(signX*step, signY*step);

 window.repaint();

}

Inner classes for action listeners have
access to the members of the outer class

public class StartAndStopButton extends JFrame {
 Timer timer;
 boolean animated=false;
 JButton button;

 class StartStopActionListener implements ActionListener{
 public void actionPerformed(ActionEvent e){
 if(animated){
 timer.stop();
 button.setText("Start");
 animated=false;
 }
 else{
 timer.start();
 button.setText("Stop");
 animated=true;
 }
 }
 }
}

Inner class

Design choice for action listeners

• If they are inner classes, you cannot reuse them without creating an
instance of an outer class

class Foo {
 public static void main (String[] args) {
 MyOuter outerObj = new MyOuter();
 MyOuter.MyInner innerObj
 = outerObj.new MyInner();
 }
}

• If they are standalone classes, you may need to pass to them
references to every class member which needs to be affected by an
action

Basic GUI programming - summary

• To a JFrame instance
– Add components comprising the interface
– Use Layout Managers to position components on the screen
– Program a WindowListener class to perform actions on window

closing event.

• For every GUI component that generates events for which
your application needs to react to:
– Define a class that implements the Listener interface for desired

events.
– Instantiate and register Listener class with the component that

generates desired events.

Building GUIs

• Use JPanel as a decomposition tool for complex views.
– A standard technique.

– Provides more flexibility;

– JPanel can be added to other structures to expand or
modify application.

• Build app view on a JPanel and add to a JFrame content
pane.

• Good practice: replace default window content pane
with the top-level Jpanel:

myFrame.setContentPane(myPanel);

Look and feel

• “Pluggable Look & Feel” allows your program to
emulate the look and feel of various operating
environments.

• You can even dynamically change the look and feel
while the program is executing.

• Usually selection of one of two things:

– the “cross platform” (Swing’s “metal”),

– look and feel for the system you are currently on

• You must execute the LookAndFeel setup before you
create any visual components

Look and feel examples (1/3)

UIManager.setLookAndFeel(UIManager.

 getCrossPlatformLookAndFeelClassName());

Look and feel examples (2/3)

UIManager.setLookAndFeel(UIManager.

 getSystemLookAndFeelClassName());

Cross-platform System (Windows)

Look and feel examples (3/3)

UIManager.setLookAndFeel("com.sun.java."+
 "swing.plaf.motif.MotifLookAndFeel");

Cross-platform System (Windows 7) Motif

Building GUIs
• Components can have borders to give them desired looks.

• The JComponent method adds a border to a component:

public void setBorder (Border border)

 Standard borders are obtained from the class
javax.swing.BorderFactory.

MenuBar and Menu

• A menu offers options to user.

• Menus are not generally added to user interface.

• Menu usually appears either in a menu bar or as a
popup menu.

• A JFrame often has a menu bar containing many
menus; and each menu can contain many choices.

MenuBar and Menu

• Menu bar can be added to a JFrame with the method
setJMenuBar:

JFrame window = new JFrame("Some Application");

JMenuBar menuBar = new JMenuBar();

window.setJMenuBar(menuBar);

Menu
• Menus are JMenu instances and added to menu bar:

JMenuItem swing = new JMenuItem("Swing");

JMenuItem take = new JMenuItem("Take");

JMenuItem bunt = new JMenuItem("Bunt");

batter.add(swing);

batter.add(take);

batter.add(bunt);

JMenu batter = new JMenu("Batter");
menuBar.add(batter);

 Menu choices are JMenuItem instances, and are added to
menu:

Menubar and Menu

JMenuItem listener

• When the user selects an item, the JMenuItem
selected generates an ActionEvent.

• Implement an ActionListener for each
JMenuItem to program menu events.

Java code examples for widgets

• Visit:

• http://java.sun.com/docs/books/tutorial/uiswing/components/

• And choose choice: How to …

http://java.sun.com/docs/books/tutorial/uiswing/components/

Dialog

• A window to present information or gather
input from user.

• For standard dialogs use:JOptionPane,
JFileChooser, and JColorChooser

• For custom dialogs use JDialog.

Dialog

• Every dialog

– Has owner, a frame.

– It’s destroyed if owner is destroyed,

– disappears from the screen while owner is iconified.

• Two kinds of dialogs

– modal : User input to all other windows is blocked
when a modal dialog is visible.

– non-modal : dialogs for which you must use JDialog.

public static void showMessageDialog (

 Component parentComponent,

 Object message,

 String title,

 int messageType,

 Icon icon

);

JOptionPane showMessageDialog
• Used to create simple, standard dialogues.

Frame owner

String message to be displayed

Window’s title

int value indicating style of message

icon to be displayed in dialog

JOptionPane showInputDialog

• When user presses “OK” button:
– contents of text field is returned or null if user presses “Cancel” or

closes window.

– Contents is String. Requesting a number from user, you must validate

and convert String to appropriate type of value.

 Used to get input from user. It gets a String from user,
 using either a text field or a combo box.

 Parameters are the same as in showMessageDialog.

 A simpler variants of method is specified as

public static String showInputDialog (

 Component parentComponent, Object message)

showInputDialog

String response =

 JOptionPane.showInputDialog(frame, “Message Type”);

int value = convertToInt(response);

JOptionPane method
showConfirmDialog

• The showConfirmDialog generates a two or three button window.

• The two button provides “Yes” and “No” or ‘OK” and “Cancel”
buttons.

• The three button, “Yes,” “No,” and “Cancel” buttons.

• The method returns an int indicating the user’s response. Possible
return values include

JOptionPane.YES_OPTION,

JOptionPane.OK_OPTION,

JOptionPane.NO_OPTION, JOptionPane.CANCEL_OPTION,

 and if user closes window,

JOptionPane.CLOSED_OPTION.

Show confirm dialog

int response =

JOptionPane.showConfirmDialog(frame,

 “Take over the world?”,

 “The Brain”, JOptionPane.YES_NO_OPTION);

if (response == YES_OPTION) …

FileChooser and JColorChooser
dialogs

• JFileChooser : mechanism for user to select a file.

JFileChooser directory = new JFileChooser();

directory.setCurrentDirectory(new File(“.”));

directory.showOpenDialog(this); //open dialog.

File file = directory.getSelectedFile();

FileChooser and JColorChooser dialogs

• JColorChooser presents a pane of controls that
allow a user to select and manipulate a color.

JDialog

• Used to create custom dialog windows.

• A Jdialog
– a top-level window.

– has an owner, generally a frame.

– It delegates component management to a content
pane, to which components are added.

– It’s displayed by invoking its setVisible method with
an argument of true, and is hidden by invoking its
setVisible method with an argument of false

JDialog

• A typical constructor is specified as follows:

public JDialog (Frame owner, String title,

 boolean modal)

 Provides an object to create custom views to get or present
data.

