Java GUI. Part ||

Swing components

Once you have a JFrame -

you can add Swing JComponents to its pane (getContentPane()):
— ¢ Button
* RadioButton
* CheckBox
* Label
* List
* ScrollPane
e Slider
* TextArea
* TextField
* Table

Components can be nested

* Virtually all JComponents are capable to hold inside
other components, you can stick just anything into
anything else

* Most of the time we add interactive components
(Buttons, Menus, Text boxes) into a background
component (Panels, Scrollable panels)

e But even a JPanel can be used as an interactive
component

Container

Container is a Component that can contain other components and
containers.

has

JCom ponent

Swing Component Hierarchy

ﬁ

IMenultem JToggleButton
JScrollbar

. IMennu
_Menu

JTextComponent

Intermediate containers

Used to organize and position other components.

JPanel used for collecting other components.
JScrollPane provides view with scroll bars.
JSplitPane divides two components graphically.

JTabbedPane lets the user switch between a group
of components by clicking on a labeled tab.

JFrame

is a window with title, border, (optional) menu bar and
user-specified components.

It can be moved, resized, iconified.

JFrame internal structure

A Swing Frame has a fairly complicated structure, with several
panes. Some of these are used to implement pluggable look-
and-feel.

JFrame

Lavered Fane

Foot Pane w—Glass Fane

EnntentPar{

JFrame

is not a subclass of JComponent

Dimension
LayoutManager |

b

Font

Fonthdfetrics

Color

[Otject |q

Graphics

1

<>
ntainer m——

Ao
§—|o;1;nonen|<}——{o

:

Classe:

s in the java .awt
package

_| Panel |\

—| Applet I

—' Window | \

Frame |

Clormporent,

i

Lightwreight

Swing Corapone rds
inthe javax.swing package

JFrame

 JFrame delegates responsibility of managing user-specified
components to a content pane, an instance of JPanel.

* To add a component to a JFrame, add it to its content pane:

JFrame f = new JFrame("A Frame");
JButton b = new JButton("Press");
Container cp = f.getContentPane();
cp.add(b)

Heavyweight and lightweight
components

* Heavyweight components

— Instances of classes JApplet, JDialog, JFrame, and
JWindow.

— Created by association to a native GUlI component
part of the native windowing system.

— Their look and feel depends on the native GUI
component.

* Lightweight components
— Any other Swing component.
— They are completely implemented in Java.

Sequential/Concurrent programming (1/2)

 Athread is a sequence of instructions being executed
by the processor.

* Sequential programming: So far programs consisted
of a single thread, which executes the sequence of
actions in the main method (main thread).

 Concurrent programming: A program can contain
several threads each executing independent
sequences of actions.

Sequential/Concurrent programming (2/2)

* Event-dispatching thread: executes all the code that
involves repainting components and handling events.

 After the JFrame has been made visible, the main
thread should not perform actions that affect or
depend on the state of the user interface.

LayoutManager

* Responsible for positioning and sizing
components added to a container.

e Each container is associated with a
LayoutManager.

* Setting and accessing Container’s layout manager:

public LayoutManager getLayout();
public void setlLayout (LayoutManager manager);

LayoutManager classes (1/2)

FlowLayout lays out components left to right, top
to bottom.

BorderLayout lays out up to five components,
positioned “north,” “south,” “east,” “west,” and “center.”

GridlLayout lays out components in a two-
dimensional grid.

CardLayout displays components one at a time
from a preset deck of components.

LayoutManager classes (2/2)

* GridBaglLayout lays out components vertically
and horizontally according to a specified set of
constraints.

* BoxLayout lays out components in either a
single horizontal row or single vertical column.

* OverlayLayout components are laid out on top
of each other.

Understanding Layout manager
policies

* Each background container may have its own
layout manager

e To avoid frustration, it is useful to understand
how each layout manager follows its own
policy on determining the position and the
size of components it contains

Example: how the layout manager
decides

A layout scenario: make a panel and add 3 buttons to it

 The panel’s layout manager asks each button how big it
prefers to be: getPreferredSize()

 The layout manager of JPanel uses its policies to decide
whether it should respect all, part, or none of its
buttons’ preferences

* Add the panel to JFrame:

* JFrame’s layout manager asks the panel about its
preferred size, and then decides according to its layout

manager whether to respect the panel’s preferences or
ignore them.

Three main layout managers

e Border
e Flow
* Box

Border layout

* Divides a background container into 5 regions

* You can add only one component per region to a
background controlled by BorderLayout manager

e Components don’t get to have their preferred size

JFrame’s content pane default layout manager:
BorderLayout.

Flow layout

 Each component is the size it wants to be

* The components are laid out left-to-right in
the order they are added

* When the next component would not fit
horizontally, it drops to the next “line”

JPanel’s default layout manager: FlowLayout.

Box layout

 Each component gets to have its preferred size

 The components are stack vertically (or
horizontally) one above the other

 Each new component is forced to start a new
H“neﬂ

Border layout

The background container is North

divided into 5 regions

West Center East

South

JFrame frame = new JFrame();

JButton button = new JButton(“click me”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);

frame.setVisible(true);

Border layout example 1

JFrame frame = new JFrame();

JButton button = new JButton(“click me”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);

frame.setVisible(true);

EEEERTS)

click me

How the layout manager come up with these dimensions for the
button?

Border layout example 2

JFrame frame = new JFrame();

JButton button = new JButton(“click like you mean it”);
frame.getContentPane().add(BorderLayout.EAST, button);
frame.setSize(200,200);

frame.setVisible(true);

==

| click like you mean it

Border layout policy

Mext time
I'm goin’ with flow
layout. Then I get
EVERY THIMNG I

I have a lot of words
now, so T'd prefer to be
60 pixels wide and 25
pixels tall.

Since it is in the East region,
| respect its preferred width.
| don’t care how tall it wants
to be: it will be as tall as a
frame. THIS IS MY POLICY

Border layout manager

Border layout example 3

JFrame frame = new JFrame();

JButton button = new JButton(“There is no spoon...”);
frame.getContentPane().add(BorderLayout.NORTH, button);
frame.setSize(200,200);

frame.setVisible(true);

L o e e |

There is no spoon...

Border layout example 4

JFrame frame = new JFrame();
JButton button = new JButton(“Click This!”);

Font bigFont = new Font(“serif”, Font.BOLD, 28);
button.setFont(bigFont);
frame.getContentPane().add(BorderLayout.NORTH, button);
frame.setSize(200,200);
frame.setVisible(true);

Lo e | [e e S |

There is no spoon... CliCk thiS

I think I'm getting it_.. if T'm in east or
west, I get my preferred width but the
height is up to the layout manager. And
if I'm in nerth or south, it's just the
opposite—I get my preferred height, but
not width.

the center gets whatever is left

JFrame frame = new JFrame();

new JButton(“East”);
new JButton(‘“West”);
JButton north = new JButton(“North”);|

JButton east
JButton west

Border layout summary example

o | B [|

North

West

Center

East

South

JButton south = new JButton(“South”);
JButton center = new JButton(“Center”);
add(BorderLayout.EAST, east);
add(BorderLayout.WEST, west);
add(BorderLayout.NORTH, north);
add(BorderLayout.SOUTH, south);
add (BorderLayout.CENTER, center);

frame.
frame.
frame.
frame.
frame.
frame.
frame.

getContentPane().
getContentPane().
getContentPane().
getContentPane().
getContentPane().
setSize(300,300);
setVisible(true);

Flow layout example:
panel with 2 buttons (1/3)

Adding a panel to the East region of JFrame

JFrame frame = new JFrame();

JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
frame.getContentPane().add(BorderLayout.EAST, panel);
frame.setSize(200,200);

frame.setVisible(true);

EEEETS)

Flow layout example:
panel with 2 buttons (2/3)

Adding a button to the panel

JButton button = new JButton(“shock me”);
panel.add(button);
frame.getContentPane().add(BorderLayout.EAST, panel);

e)

shock me

Flow layout example:
panel with 2 buttons (3/3)

Adding two buttons to the panel

JButton button = new JButton(“shock me”);

panel.add(button);
JButton buttonTwo = new JButton(“bliss”);

panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

What do you expect to happen?

Flow layout example:
panel with 2 buttons (3/3)

Adding two buttons to the panel

JButton button = new JButton(“shock me”);
panel.add(button);

JButton buttonTwo = new JButton(“bliss”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

(14 ESRERT)

Box layout example:
panel with two buttons

JPanel panel = new JPanel();

panel.setLayout(new BoxLayout(panel, BoxLayout.Y AXIS));
JButton button = new JButton(“shock me”);
panel.add(button);

JButton buttonTwo = new JButton(“bliss”);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

(B ESREERE)

shock me

Component layout summary

BorderLayoutDemo

Button 1 (PAGE_START)

Button 3 {LINE_START) Button 2 {(CENTER) 5 (LINE_END)

Long-Hamed Button 4 {(PAGE_END) |

FlowLayoutDemo

Button 1 Button 2 Long-Named Button 4

BoxLayoutDemo o @ [#]

Button 1

Button 2

Button 3

Long-Hamed Button 4

5

Event-driven programs

Two main interaction patterns between the program and the
environment:

e Algorithm-driven: the program determines what information

it needs and when to get it (text-based interfaces). Active
application

* Event-driven: the application waits for something to happen
in the environment - it waits for an event, responds to this
event and then waits for the next event (Graphical User
Interfaces). Passive application.

Events and components

Events are objects.
Events: subclasses of abstract class java.awt.AWTEvent.
Components generate events.

An event object knows event source and other relevant
information about the event.

Given an event, to query for its component’s source:

public Object getSource();

Listener or Event handler

Listener: An object interested in being notified when an
event occurs in a given component.

A Listener object registers with a component to be notified
of events generated by it.

Listener must implement the event listener interface
associated with events for which it registered.

Programming a handler for an event consists of
implementing the interface associated with the event type.

General approach to GUI design

Program an application that displays a button. When
the button is pressed, its foreground and background
colors are swapped.

* Design: extend the class JFrame with OnOffSwitch,
and its constructor builds the frame containing the

button.

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

class OnOffSwitch extends JFrame {

public OnOffSwitch () {
super("0On/Off Switch"); // frame title
JButton button = new JButton("On/Off");
button.setForeground(Color.black);
button.setBackground(Color.white);
this.getContentPane().add(button,
BorderLayout.CENTER);

}
}//end of OnOffSwitch

public class OnOffTest {
public static void main (String[] args) {
OnOffSwitch frame = new OnOffSwitch();
frame.setSize(300,200);
frame.setVisible(true);

Program does not work

* Pressing the button has no effect at all.

* When the button is pressed, it generates an
ActionEvent.

 We need to program the response to that event.

Programming an ActionListener for
JButton

* Implement a listener to handle event generated
by JButton instance.

* |If user presses button, it generates an
ActionEvent.

e To do:

— Define a class, Switcher, that implements ActionEvent.

— Register an instance of Switcher with the JButton
instance.

Revision of OnOffSwitch to create a Switcher listener
and register it with JButton

public OnOffSwitch () {
super("On/0ff Switch"); // frame title

// create button and set its colors
JButton button = new JButton("On/Off");
button.setForeground(Color.black);
button.setBackground(Color.white);

// create and register button’s listener:
button.addActionlListener(new Switcher());

// add button to JFrame’s content pane:
this.getContentPane().add(
button, BorderLayout.CENTER);

Switcher ActionListener

class Switcher implements ActionListener {

public void actionPerformed (ActionEvent e) {
Component source = (Component)e.getSource();
Color oldForeground = source.getForeground();
source.setForeground(source.getBackground()) ;
source.setBackground(oldForeground) ;

JFrame close event

* To terminate the program need to program a
window listener to close the window.

A window listener must implement the 7
methods in Windowlistener interface.

* We only want to implement 2 of those methods:
void windowClosed (WindowEvent e)
void windowClosing (WindowEvent e)

Adapter classes: WindowAdapter

e Java provides a collection of abstract event
adapter classes.

* These adapter classes implement listener
interfaces with empty, do-nothing methods.

* To implement a listener class, we extend an

adapter class and override only methods
needed.

Terminator class

//implements window events to close a window
class Terminator extends WindowAdapter {

public void windowClosing(WindowEvent e) {
Window w = e.getWindow();
w.dispose();

}

public void windowClosed(WindowEvent e) {
System.exit(09);
}

Create a new instance of Terminator

and register with JFrame

public OnOffSwitch () {
super("On/0ff Switch"); // frame title
this.addWindowListener(new Terminator());

// create button and set its colors
JButton button = new JButton("On/Off");
button.setForeground(Color.black);
button.setBackground(Color.white);

// create and register button’s listener:
button.addActionListener(new Switcher());

// add button to JFrame’s content pane:
this.getContentPane().add(
button, BorderLayout.CENTER);

Reminder: Timer action listener

BouncingBallAnimationListener(SimpleShape shape,
int step, JFrame window) {}

ic void actionPerformed(ActionEvent e) {
if(shape.getX()+shape.getWidth()+this.step >= this.maxBoundX)
signX=-1; //reached the end of X axis, reverse X direction
else if (shape.getX() -this.step<=0)
signX=1; //reached the beginning of X axis, reverse X direct
if(shape.getY()+shape.getHeight()+this.step >= this.maxBoundY)
signY=-1; //reached the end of Y axis, reverse Y direction
else if (shape.getY() -this.step<=0)
signY=1; //reached the beginning of Y axis, reverse Y direct

shape.changelocation(signX*step, signY*step);

window.repaint();

Inner classes for action listeners have
access to the members of the outer class

public class StartAndStopButton extends JFrame {
Timer timer;
boolean animated=false;
JButton button; Inner class

class StartStopActionListener implements ActionListener{
public void actionPerformed(ActionEvent e){
if(animated){
timer.stop();
button.setText("Start");
animated=false;

}

else{
timer.start();
button.setText("Stop");
animated=true;

}

Design choice for action listeners

e If they are inner classes, you cannot reuse them without creating an
instance of an outer class
class Foo {
public static void main (String[] args) {
MyOuter outerObj = new MyOuter();
MyOuter.MyInner innerObj
= outerObj.new MyInner();

* If they are standalone classes, you may need to pass to them
references to every class member which needs to be affected by an

action

Basic GUI programming - summary

e To aJFrame instance

— Add components comprising the interface

— Use Layout Managers to position components on the screen

— Program a WindowListener class to perform actions on window
closing event.

* For every GUI component that generates events for which
your application needs to react to:

— Define a class that implements the Listener interface for desired
events.

— Instantiate and register Listener class with the component that
generates desired events.

Building GUIs

* Use JPanel as a decomposition tool for complex views.
— A standard technique.
— Provides more flexibility;

— JPanel can be added to other structures to expand or
modify application.

* Build app view on a JPanel and add to a JFrame content
pane.

* Good practice: replace default window content pane
with the top-level Jpanel:

myFrame.setContentPane(myPanel);

Look and feel

“Pluggable Look & Feel” allows your program to
emulate the look and feel of various operating
environments.

You can even dynamically change the look and feel
while the program is executing.

Usually selection of one of two things:
— the “cross platform” (Swing’s “metal”),
— look and feel for the system you are currently on

You must execute the LookAndFeel setup before you
create any visual components

Look and feel examples (1/3)

UIManager.setlLooRAndFeel (UIManager.
getCrossPlatformLooRAndFeelClassName ());

(&) Look And Feel E=SEERT)

JButton JTextField JLabel

eeny
meeny
Minnie

[]JCheckBox > Radio |eeny || Mickey
Moe

Larry
Curly

Look and feel examples (2/3)

UIManager.setLooRAndFeel (UIManager.
getSystemLookAndFeelClassName());

[(&) Look And Feel el =S | [(2] Look And Feel ESREERT)

JButton JTextField JLabel

eeny ey

meeny meeny
Minnie , Minnie
' T Radio |eeny - | Mickey

[]JCheckBox > Radio |eeny || Mickey : " Moe
Moe Larry
Larry Curly
Curly

Cross-platform System (Windows)

Look and feel examples (3/3)

UIManager.setlLooRAndFeel ("com.sun. java. "+
"swing.plaf.motif.MotifLookAndFeel™);

| £ Look And Feel l = | (=] |iE-J | £s| Look And Feel l — | (=] |iE-J r@ Look And Feel l = | (=] |ihj1
: { | TTextField| JLabel ICheckB
JButton | |TextField JLabel j |Eee] e s JButton | | JTextField JLabel _|JCheckBox
eeny eeny
meeny meeny ey
. Minnie meery
Minnie Radio |eeny - | Mickey Minnie
[|JCheckBox (O Radio |eeny Mickey Moe ~ el =
Moe Loy adio eeny | Mn: By
Larry Curly oe
Curly Larry
CUrly
Cross-platform System (Windows 7) Motif

Building GUIs

 Components can have borders to give them desired looks.

e The JComponent method adds a border to a component:

public void setBorder (Border border)

» Standard borders are obtained from the class
javax.swing.BorderFactory.

MenuBar and Menu

A menu offers options to user.
Menus are not generally added to user interface.

Menu usually appears either in a menu bar or as a
popup menu.

A JFrame often has a menu bar containing many
menus; and each menu can contain many choices.

MenuBar and Menu

e Menu bar can be added to a JFrame with the method
setJMenuBar:

JFrame window = new JFrame("Some Application");
JMenuBar menuBar = new JMenuBar();
window.setJMenuBar(menuBar);

Menu

e Menus are JMenu instances and added to menu bar:

JMenu batter = new JMenu("Batter");
menuBar.add(batter);

» Menu choices are JMenultem instances, and are added to
menu:

JMenuItem swing = new JMenultem("Swing");
JMenulItem take = new JMenuItem("Take");
JMenuItem bunt = new JMenuItem("Bunt");
batter.add(swing);

batter.add(take);

batter.add(bunt);

Menubar and Menu

— Some Application o
Batter | Pitcher Defense Runners

Swing

Take

Bunt

JMenultem listener

* When the user selects an item, the JMenultem
selected generates an ActionEvent.

* Implement an ActionListener for each
JMenultem to program menu events.

Java code examples for widgets
* Visit:

* http://java.sun.com/docs/books/tutorial/uiswing/components/

* And choose choice: How to ...

http://java.sun.com/docs/books/tutorial/uiswing/components/

Dialog

* A window to present information or gather
input from user.

* For standard dialogs use:JOptionPane,
JFileChooser, and JColorChooser

* For custom dialogs use JDialog.

Dialog

* Every dialog
— Has owner, a frame.
— It's destroyed if owner is destroyed,
— disappears from the screen while owner is iconified.

* Two kinds of dialogs

— modal : User input to all other windows is blocked
when a modal dialog is visible.

— non-modal : dialogs for which you must use JDialog.

JOptionPane showMessageDialog
* Used to create simple, standard dialogues.

public static void showMessageDialog (

Component parentComponent,
) String message to be displayed
Object message,

String title,
int messageType, int value indicating style of message

Icon 1icon icon to be displayed in dialog

JOptionPane showlnputDialog

» Used to get input from user. It gets a String from user,
using either a text field or a combo box.

» Parameters are the same as in showMessageDialog.

» A simpler variants of method is specified as

public static String showInputDialog (
Component parentComponent, Object message)

* When user presses “OK” button:

— contents of text field is returned or null if user presses “Cancel” or
closes window.

— Contents is String. Requesting a number from user, you must validate
and convert String to appropriate type of value.

showlnputDialog

— Input

Message Type

OK Cancel

String response =
JOptionPane.showInputDialog(frame, “Message Type”);
int value = convertToInt(response);

JOptionPane method
showConfirmDialog

 The showConfirmDialog generates a two or three button window.

 The two button provides “Yes” and “No” or ‘OK” and “Cancel”
buttons.

The three button, “Yes,” “No,” and “Cancel” buttons.

The method returns an int indicating the user’s response. Possible
return values include

JOptionPane.YES_OPTION,

JOptionPane.OK_OPTION,

JOptionPane.NO_OPTION, JOptionPane.CANCEL_OPTION,
and if user closes window,

JOptionPane.CLOSED_OPTION.

Show confirm dialog

~| The Brain | : |

Take over the world?

Yes Mo |

int response =
JOptionPane.showConfirmDialog(frame,

“Take over the world?”,

“The Brain”, JOptionPane.YES_NO_OPTION);
1f (response == YES_OPTION) ..

FileChooser and JColorChooser

dialogs

 JFileChooser : mechanism for user to select a file.

JFileChooser directory = new JFileChooser();
directory.setCurrentDirectory(new File(".”));
directory.showOpenDialog(this); //open dialog.
File file = directory.getSelectedFile();

——

Open

Look In: |] ch1

v | =) &/ =] g8 e

[y Counter.class
[y Counter.java

[CounterTester. java
[y Person.class

[y Personjava

[y Rectangle.class
[y Rectangle.java

[y CounterTester.class [) Test.class

[y Testjava

File HName: |

Files of Type: | All Files

|

Open

Cancel

FileChooser and JColorChooser dialogs
e JColorChooser presents a pane of controls that

allow a user to select and manipulate a color.

EEEEEEET |
EEEEEREE |
EEEEEEEN | |

EEEEEEEN | |
EEEEEEEN | |
EEEEE]

[Swatches |HSE [RGB

EEEEE]|
R
EEEEEE ||
AR

TSN
TSN NNENN
EEREREEE |
EEEEREEE |
EERERENT |

JDialog

* Used to create custom dialog windows.

* AJdialog

— a top-level window.
— has an owner, generally a frame.

— It delegates component management to a content
pane, to which components are added.

— It’s displayed by invoking its setVisible method with
an argument of true, and is hidden by invoking its
setVisible method with an argument of false

JDialog

* A typical constructor is specified as follows:

public JDialog (Frame owner, String title,
boolean modal)

» Provides an object to create custom views to get or present
data.

