
Using Java generics

Lecture 17

Methods for writing general-purpose
code

• Polymorphism: a method that takes a base class object as
an argument, and then uses that method with any class
derived from that base class. Now your method is more
general and can be used in more places. Anything but a
final class can be extended, so this flexibility is automatic.

• Sometimes, being constrained to a single hierarchy is too
limiting. If a method argument is an interface instead of a
class, the limitations are loosened to include anything that
implements the interface.

• Sometimes even an interface is too restrictive. An interface
still requires that your code work with that particular
interface. You could write even more general code if you
could say that your code works with "some unspecified
type".

Concept of generics

• Generics implement the concept of parameterized
types, which allow multiple types.

• The term "generic" means "pertaining or appropriate
to large groups of classes."

• Generics allow the programmer the greatest amount
of expressiveness possible when writing classes or
methods

Generic classes Example 1: Tuple
library

• One of the things you often want to do is return
multiple objects from a method call.

• The return statement only allows you to specify a
single object, so the answer is to create an object
that holds the multiple objects that you want to
return.

• You can write a special class every time you
encounter the situation, but with generics it’s
possible to solve the problem once and save
yourself the effort in the future. At the same
time, you are ensuring compile-time type safety.

Generic classes example 1: TwoTuple

public class TwoTuple<A,B> {

 public final A first;
 public final B second;

 public TwoTuple(A a, B b) {

 first = a; second = b;

 }

 public String toString() {

 return "(" + first + ", " + second + ")";

}

Read-only object

Generic classes example 1: ThreeTuple

public class ThreeTuple<A,B,C> extends TwoTuple<A,B>

{

 public final C third;

 public ThreeTuple(A a, B b, C c) {

 super(a, b);

 third = c;

 }

 public String toString() {

 return "(" + first + ", " + second + ", " +
 third +")";

 }

}

Generic classes example 1: FourTuple

public class FourTuple<A,B,C,D> extends ThreeTuple<A,B,C>
{
 public final D fourth;
 public FourTuple(A a, B b, C c, D d) {
 super(a, b, c);
 fourth = d;
 }

 public String toString() {
 return "(" + first + ", " + second + ", " +
 third + ", " + fourth + ")";
 }
}

Generic classes example 1: TupleTest
class Amphibian {}
class Vehicle {}

public class TupleTest {
 static TwoTuple<String,Integer> f(String s, Integer i) {
 return new TwoTuple<String,Integer>(s, i);
 }

 static ThreeTuple<Amphibian,String,Integer> g(Amphibian a,
 String s, Integer i) {
 return new ThreeTuple<Amphibian, String, Integer>(new
 Amphibian(),s, i);
 }

 public static void main(String[] args) {
 TwoTuple<String,Integer> ttsi = f("hi",47);
 System.out.println(ttsi);
 // ttsi.first = "there"; // Compile error: final
 System.out.println(g(new Amphibian(), "hi",47));
 }
}

(hi, 47)
(generics.Amphibian@93dcd, hi, 47)

Generic classes example 2: RandomList

import java.util.*;
public class RandomList<T> {
 private ArrayList<T> storage = new ArrayList<T>();
 private Random rand = new Random(47);
 public void add(T item) { storage.add(item); }
 public T select() {
 return storage.get(rand.nextInt(storage.size()));
 }

 public static void main(String[] args) {
 RandomList<String> rs = new RandomList<String>();

 for(String s: ("The quick brown fox jumped over " +
 "the lazy brown dog").split(" "))
 rs.add(s);

 for(int i = 0; i < 11; i++)
 System.out.print(rs.select() + " ");
 }
}

Generic methods

• A generic method allows the method to vary
independently of the class.

• As a guideline, you should use generic
methods rather than the generic classes.

• In addition, if a method is static, it has no
access to the generic type parameters of the
class, so if it needs to use genericity it must be
a generic method.

Generic method syntax

To define a generic method, you simply place a
generic parameter list before the return value:

public <T> void f(T x)

Generic methods example 1: print type

public class GenericMethods {
 public <T> void f(T x) {
 System.out.println(x.getClass().getName());
 }

 public static void main(String[] args) {
 GenericMethods gm = new GenericMethods();
 gm.f("");
 gm.f(1);
 gm.f(1.0);
 gm.f(1.0F);
 gm.f('c');
 gm.f(gm);
 }
}

java.lang.String
java.lang.Integer
java.lang.Double
java.lang.Float
java.lang.Character
generics.GenericMethods

We expect that generic class knows
the actual type of its parameters

import java.util.*;

public class LostTypeInfo {
 public static void main (String [] args)
 {
 TwoTuple <String,Integer> t1=new TwoTuple
 <String,Integer>("name",1);
 System.out.println(Arrays.toString(
 t1.getClass().getTypeParameters()));

 TwoTuple <Integer,Integer> t2=new TwoTuple
 <Integer,Integer>(1,2);
 System.out.println(Arrays.toString(
 t2.getClass().getTypeParameters()));
 }
}
 [A, B]

[A, B]

The cold truth is:

There’s no information about generic parameter
types available inside generic code during run
time.

Erasure at run time

• Java generics are implemented using erasure.

• This means that any specific type information
is erased when you use a generic.

• Inside the generic, the only thing that you
know is that you’re using an Object. So
List<String> and List< Integer> are, in fact, the
same type at run time. Both forms are
"erased" to their raw type, List

C++ templates: only look similar
//: generics/Templates.cpp

#include <iostream>

using namespace std;

template<class T> class Manipulator {

 T obj;

 public:

 Manipulator(T x) { obj = x; }

 void manipulate() { obj.f(); }

};

class HasF {

 public:

 void f() { cout << "HasF::f()" << endl; }

};

int main() {

 HasF hf;

 Manipulator<HasF> manipulator(hf);

 manipulator.manipulate();

}

HasF::f()

C++ approach to generics

• manipulate() method calls a method f() on
obj. How can it know that the f() method
exists for the type parameter T?

• The C++ compiler checks when you instantiate
the template, so at the point of instantiation
of Manipulator <HasF>, it sees that HasF has a
method f().

• If it were not the case, you’d get a compile-
time error, and thus type safety is preserved.

Trying it with Java (1/2)

public class HasF {

 public void f() {

 System.out.println("HasF.f()");

 }

}

Trying it with Java (2/2)

// {CompileTimeError} (Won’t compile)
 class Manipulator <T> {
 private T obj;
 public Manipulator(T x) { obj = x; }

 public void manipulate() { obj.f(); }

 public static void main(String[] args) {
 HasF hf = new HasF();
 Manipulator<HasF> manipulator =
 new Manipulator<HasF>(hf);
 manipulator.manipulate();
 }
}

// Error: cannot find symbol: method f():

Java bounds

• Because of erasure, the Java compiler can’t map the
requirement that manipulate() must be able to call
f() on obj to the fact that HasF has a method f().

• In order to call f(), we must assist the generic class
by giving it a bound that tells the compiler to only
accept types that conform to that bound.

Using type bounds

class Manipulator2<T extends HasF> {

 private T obj;

 public Manipulator2(T x) { obj = x; }

 public void manipulate() { obj.f(); }

}

Extends means extends or
implements

The same can be done without
generics

class Manipulator3 {

 private HasF obj;

 public Manipulator3(HasF x) {

 obj = x;

 }

 public void manipulate() {

 obj.f();

 }

}

Bottom line

• Erasure reduces the "genericity" of generics. Generics
are still useful in Java, just not as useful as they could
be, and the reason is erasure.

• In an erasure-based implementation, generic types are
treated as second-class types that cannot be used in
some important contexts.

• The generic types are present only during static type
checking (compilation), after which every generic type
in the program is erased by replacing it with a non-
generic upper bound.

• The reason: migration compatibility with the previous
non-generic java code

