
Java Strings

Lecture 15

Immutable String

• Objects of the String class are immutable

• Every method in the class that appears to modify
a String actually creates and returns a brand new
String object containing the modification. The
original String is left untouched.

• Because a String is read-only, there’s no
possibility that one reference will change
something that will affect the other references.

Java String API (subset)
Method Parameter Return value

length() Number of characters in the String.

charAt() int Index The char at a location in the String.

toCharArray() Produces a char[] containing the
characters in the String.

equals(),
equalsIgnoreCase()

A String to compare with An equality check on the contents of
the two Strings.

contains() A CharSequence to search for Result is true if the argument is
contained in the String.

substring() (also
subSequence())

Overloaded: starting index;
starting index + ending index.

Returns a new String object
containing the specified character
set.

replace() The old character to search
for, the new character to
replace it with. Can also
replace a CharSequence with
a CharSequence.

Returns a new String object with the
replacements made. Uses the old
String if no match is found

The methods work on the original
String but do not change it

public class Immutable {
 public static String upcase(String s) {
 return s.toUpperCase();
 }

 public static void main(String[] args) {
 String q = "howdy";
 print(q); // howdy
 String qq = upcase(q);
 print(qq); // HOWDY
 print(q); // howdy
 }
}

Passing by value (passing by copy)

When you call Java method with reference
variable as a parameter, a copy of the
reference is created – it means that there are
now two different reference variables which
point to the same object.

If you assign copy to a different object, this
does not change the original object

Passing object references

Thus, we cannot make the object parameter refer to a different
object by reassigning the reference or calling new on the
reference. For example the following method would not work as
expected:

public static void changeTuple(Tuple t)

{

 t=new Tuple(1,"changed");

}

Passing String as a parameter:
the same

When you pass a String as a
parameter, it is the reference
to the original String which is
copied into the parameter, but
you cannot change any field of
the original String because it is
immutable – does not have
methods to change its fields.

What is printed
public class ImmutableObjects {
 public static void changeTuple(Tuple t) { t=new Tuple(1,"changed"); }

 public static void changeTupleFields(Tuple t){
 t.setI(1);
 t.setS("changed");
 }

 public static void changeInteger(Integer n) { n=new Integer(1); }

 public static void changeString(String s) { s="changed"; }

 public static void main(String [] args){
 String myS="original";
 changeString(myS);
 System.out.println(myS);

 Integer myN=0;
 changeInteger(myN);
 System.out.println(myN);

 Tuple myT= new Tuple(0,"original");
 changeTuple(myT);
 System.out.println(myT);

 changeTupleFields(myT);
 System.out.println(myT);
 }
}

Concatenating strings

• The operator ‘+’ has been overloaded for
String objects.

• Overloading means that an operation has
been given an extra meaning when used with
a particular class.

(The ‘+’ and ‘+=‘ for String are the only operators that are overloaded in Java, and
Java does not allow the programmer to overload any others.)

Each time creates a new String

String mango = "mango";

String s = "abc" + mango + "def" + 47;

• Creates new strings
– s0=”abc”

– s1=“abcmango”

– s2=“abcmangodef”

– s=“abcmangodef47”

Need to be garbage
collected

This would give unacceptable performance

JVM implicitly uses StringBuilder.
An append method of the StringBuilder class is called 4 times instead.

StringBuilder is used implicitly

public String implicit(String[] fields) {

 String result = "";

 for(int i = 0; i < fields.length; i++)

 result += fields[i];

 return result;

}

The implicit StringBuilder
construction happens inside this loop,
which means you’re going to get a
new StringBuilder object every time
you pass through the loop.

Use StringBuilder explicitly

public String explicit(String[] fields) {

 StringBuilder result = new StringBuilder();

 for(int i = 0; i < fields.length; i++)

 result.append(fields[i]);

 return result.toString();

}

The method only creates a single StringBuilder object.

Creating an explicit StringBuilder also allows you to pre-
allocate its size if you have extra information about how
big it might need to be, so that it doesn’t need to
constantly reallocate the buffer.

toString method

When you create a toString() method:

• If the operations are simple ones that the
compiler can figure out on its own, you can
generally rely on the compiler to build the
result.

• If looping is involved, you should explicitly use
a StringBuilder in your toString()

Example: using StringBuilder in
toString()

public class RandomSequence25
{
 public static Random rand = new Random(47);

 public String toString() {
 StringBuilder result = new StringBuilder("[");
 for(int i = 0; i < 25; i++) {
 result.append(rand.nextInt(100));
 result.append(", ");
 }
 result.delete(result.length()-2, result.length());
 result.append("]");
 return result.toString();
}

Creating HashMap of Strings

Hashing means using some function or algorithm to
map object data to some representative integer value.

Key Value

Cuba Havana

England London

France Paris

Spain Madrid

Switzerland Berne

Hashing by String length

Position
(hash code = key length)

Keys array Values array

1

2

3

4 Cuba Havana

5 Spain Madrid

6 France Paris

7 England London

8

9

10

11 Switzerland Berne

Solving possible collisions

We can solve the problem of collisions by having an array of
(references to) linked lists rather than simply an array of
keys/values. Each little list is generally called a bucket.

Solving problem of very long strings

We can take care of too long values by taking modulo
table size

Searching for a capital

Each node in the linked lists stores a pairing of a key with a value.
Now, to look for the mapping for, say, Ireland, we first compute this
key's hash code (in this case, the string length, 7). Then we start
traversing the linked list at position 7 in the table.

Searching for a capital

We traverse each node in the list, comparing the key stored in that
node with Ireland. When we find a match, we return the value
from the pair stored in that node (Dublin).

Searching for a capital

We find it on the second comparison. If the list at a given position
in the table is short, we'll reduce significantly the amount of work
we need to do to find a given key/value mapping.

Generic principle of a good hash code

A hash code that will cope with fairly "random
typical" input and distribute the corresponding
hash codes fairly randomly over the range of
integers (32 bits in the case of Java)

That way the keys will be distributed reasonably
evenly among the buckets.

Non-random distribution of bits in
characters

Only low bits are distributed more or less randomly,
bits 4 and 5 have a larger chance to be set to 1

Strings contain mostly numbers
and lower case letters

048 0011 0000 0

049 0011 0001 1

050 0011 0010 2

051 0011 0011 3

052 0011 0100 4

053 0011 0101 5

054 0011 0110 6

055 0011 0111 7

056 0011 1000 8

057 0011 1001 9

097 0110 0001 a

098 0110 0010 b

099 0110 0011 c

100 0110 0100 d

101 0110 0101 e

102 0110 0110 f

103 0110 0111 g

104 0110 1000 h

105 0110 1001 i

106 0110 1010 j

107 0110 1011 k

108 0110 1100 l

109 0110 1101 m

110 0110 1110 n

111 0110 1111 o

112 0111 0000 p

113 0111 0001 q

114 0111 0010 r

115 0111 0011 s

116 0111 0100 t

117 0111 0101 u

118 0111 0110 v

119 0111 0111 w

120 0111 1000 x

121 0111 1001 y

122 0111 1010 z

If we take a sum of all characters,

then we end up with numbers which have bit 4 or 5 set
depending only on String length: odd/ even.

There would be no random distribution of high bits,
and the high number of collisions will lead to inefficient
search

Inducing randomness in non-random
bits: first attempt

int hash = 0;

for (int i = 0; i < length(); i++) {

 hash = 32 * hash + charAt(i);

}

return hash;

Java String hashCode

int hash = 0;

for (int i = 0; i < length(); i++) {

 hash = (hash << 5) - hash + charAt(i);

}

return hash;

Multiplying by 31 effectively means that we are shifting the hash by
5 places and then subtracting the original bits

Recipe for spreading randomness over
non-random bits

• Shift and sum

Java String hashCode: final version

public int hashCode()

{

 int hash = 0;

 for (int i = 0; i < length(); i++) {

 hash = hash*31+ charAt(i);

 }

 return hash;

}

