
Java collections framework.
Generics

Lecture 14

ArrayList is not the only Collection

<<interface>>
Collection

<<interface>>

Set

<<interface>>
SortedSet

TreeSet

LinkedHashSet HashSet

<<interface>>
List

ArrayList LinkedList Vector X

Java collections: without generics

Java collections: with generics

Populating collection with elements

• In the constructor

Collection myCollection = new Collection (anotherCollection)

• Using static method of Collections class

Collections.addAll (myCollection, anotherCollection)

Examples: Arrays.AsList

public class AddingGroups {

 public static void main(String[] args) {

 Collection<Integer> collection = new
 ArrayList<Integer>(Arrays.asList(1, 2, 3, 4, 5));

 Integer[] moreInts = { 6, 7, 8, 9, 10 };
 collection.addAll (Arrays.asList(moreInts));

 }

}

Arrays.asList cannot be resized

public class AddingGroups {

public static void main(String[] args) {

// Produces a list "backed by" an array:

List<Integer> list = Arrays.asList(16, 17, 18, 19, 20);

list.set(1, 99); // OK -- modify an element

// list.add(5); // Runtime error because the

 // underlying array cannot be resized.

 }

}

Java generics syntax

To define an ArrayList intended to hold Apple objects,
you say ArrayList <Apple> instead of just ArrayList.

• Virtually all code which uses generics is a collection-
related code

• With generics you create type-safe containers where
problems are caught at compile-time instead of
runtime

Where to find generics declarations
• Class declaration
public class ArrayList<E> extends AbstractList<E> implements List<E> ... {

• Method declaration: return type and argument types
public boolean add(E o){}

• Now if you define
ArrayList <String> namesList=new ArrayList<String>();
• E is replaced with String everywhere in the code of ArrayList. That is if the

code for ArrayList would become:

public class ArrayListOfStrings {
 public boolean add(String o){}
• The gain is that the general code of ArrayList class adjusts itself to a Type.

Declaring your own generic methods

• Declare in a class and use in a method

public class ClassName<E> extends …{

 public boolean Add(E o)

• Declare only in a method

public <T extends Animal> void takeThing(ArrayList<T> list)

This method takes an array list of anything which is an Animal

• Not the same as:

public void takeThing(ArrayList<Animal> list)

This method takes only array list of Animal objects

Sorting songs, which do not
implement Comparable – no generics

System.out.println("Sorted songs:");
Collections.sort(songs);
System.out.println(songs);

Exception in thread "main" java.lang.ClassCastException: sorting.Song cannot be cast to
java.lang.Comparable
at java.util.ComparableTimSort.countRunAndMakeAscending(Unknown Source)
at java.util.ComparableTimSort.sort(Unknown Source)
at java.util.ComparableTimSort.sort(Unknown Source)
at java.util.Arrays.sort(Unknown Source)
at java.util.Collections.sort(Unknown Source)
at sorting.SortingSongs.main(SortingSongs.java:16)

Run-time exception

Sorting <Song> ArrayList with Song
objects which do not implement

Comparable

This time compiler will detect that Song is not
Comparable

%javac SortingSongs.java
SortingSongs.java:15: cannot find symbol
symbol : method sort(java.util.ArrayList<Song>)
location: class java.util.Collections
Collections.sort(songList);
^
1 error

Compile-time exception

Java collections:
Two primary categories

The distinction is based on the number of items that
are held in each "slot" in the container.

• The Collection only holds one item in each slot.

• The Map holds two objects, a key and an associated
value, in each slot.

The most useful containers
implementing Collection interface

<<interface>>
Collection

<<interface>>

Set

<<interface>>
SortedSet

TreeSet

LinkedHashSet HashSet

<<interface>>
List

ArrayList LinkedList Vector

The most useful containers
implementing Map interface

<<interface>>
Map

<<interface>>

SortedMap

TreeMap

HashMap LinkedHashMap HashTable

Implementations of Collection
Interface

• Lists: ArrayList and LinkedList. Hold elements in
the same order in which they are inserted. The
difference is the underlying implementation.

• Sets:
– HashSet holds one of each identical item. The storage

order is not important (often, you only care whether
something is a member of the Set, not the order in
which it appears) .

– TreeSet keeps the objects in ascending comparison
order, LinkedHashSet keeps the objects in the order in
which they were added.

Program to an interface

List<Apple> apples = new ArrayList<Apple>();

• You make an object of a concrete class, upcast it to
the corresponding interface, and then use the
interface throughout the rest of your code.

Example
public class SimpleCollection {

 public static void main(String[] args) {

 Collection <Integer> c = new ArrayList<Integer>();

 for(int i = 0; i < 10; i++)

 c.add(i); // Autoboxing: adding Integer

 for(Integer i : c)

 System.out.print(i + ", ");

 }

} /* Output:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

• Since this example only uses Collection methods, any object of a
class inherited from Collection would work

• All Collections can be traversed using the foreach syntax

List

• Resizes itself: a modifiable sequence

New problem with songs: duplicates

Using HashSet to remove duplicates

List <Song> songs=reader.songList;

System.out.println(songs);

Set <Song> songHashSet = new HashSet<Song>();

songHashSet.addAll(songs);

System.out.println("Songs with NO duplicates:");

System.out.println(songHashSet);

 Did not remove duplicates!

What makes two songs duplicates?

• Reference equality?

• Object equality?

Hashing according to HashCode

• Set is a hash table

• It puts elements into some slot of an underlying
array, according to the value of hash code

• If two non-equal elements have the same hash code,
they are chained starting from a corresponding slot

How HashSet checks for duplicates:
hashCode()

How HashSet checks for duplicates:
equals()

Default hashCode() and equals():
inherited from Object class

• hashCode: unique Integer for each object on
the heap

• equals: compares using ==, compares if two
variables reference the same object

The Song class with overridden
HashCode and equals

//new overridden methods of Object
 public boolean equals(Object aSong)
 {
 Song s = (Song) aSong;
 return this.getName().equals(s.getName());
 }

 public int hashCode()
 {
 return this.getName().hashCode();
 }

Laws of Java Object

• The API docs for Object class state that:

– If two objects are equal they MUST have matching
hash codes

– If 2 objects are equal the equality is reflective

a.equals(b) implies that b.equals(a)

– If two objects have the same hashcode they are
NOT required to be equal, but if they are equal
they MUST to have matching hash codes

Sorted without duplicates

• TreeSet prevents duplicates and also keeps
elements sorted

It works like the sort() method of Collections, in
that it keeps Comparable objects in natural
order, if you use the default TreeSet constructor.
It also has a constructor to pass a specific
Comparator.

To use TreeSet you MUST…

Which container to use

