Clustering Algorithms

Data mining lab 8

Clustering

- Clustering - discovering groups of people, things, ideas, which are closely related

You'll learn

- Distance metrics
- Two clustering algorithms
- Retrieving data from blogs
- Visualization techniques

Tutorial on clustering documents and words

- Input data (titles of the papers):
d1: Human machine interface for $A B C$ computer applicationsd2: A survey of user opinion of computer system response time
d3: The EPS user interface management system
d4: System and human system engineering testing of EPS
d5: Relation of user perceived response time to error measurement
d6: The generation of random binary ordered trees
d7: The intersection graph of paths in trees
d8: Graph minors IV: widths of trees and well-quasi-ordering
d9: Graph minors: A survey

From documents to list of words

d8 : ['graph', 'minors', 'iv', 'widths', 'of', 'trees', 'and', 'well-quasi-ordering']
d9: ['graph', 'minors', 'a', 'survey']
d6 : ['the', 'generation', 'of', 'random', 'binary', 'ordered', 'trees']
d7: ['the', 'intersection', 'graph', 'of', 'paths', 'in', 'trees']
d4 : ['system', 'and', 'human', 'system', 'engineering', 'testing', 'of', 'eps']
d5 : ['relation', 'of', 'user', 'perceived', 'response', 'time', 'to', 'error', 'measurement']
d2 : ['a', 'survey', 'of', 'user', 'opinion', 'of', 'computer', 'system', 'response', 'time']
d3 : ['the', 'eps', 'user', 'interface', 'management', 'system']
d1 : ['human', 'machine', 'interface', 'for', 'abc', 'computer', 'applications']

Remove stop words and infrequent words

```
d8 : ['graph', 'minors', 'iv', 'widths' 'of','trees', 'and' well-quasi-ordering'
d9 : ['graph', 'minors',''a', 'survey']
d6 : [the', 'generation', 'of',, random', 'binary', 'ordered', 'trees']
d7 : 'the' 'intersection', 'graph', 'of',','paths' 'in','trees']
d4 : ['system', and' 'human', 'system', 'engineering', 'testing' 'of', 'eps']
d5 : ['relation', 'of', user', 'perceived', 'response', 'time' 'to','error', 'measurement']
d2 : ['a', survey','of', 'user', 'opinion', 'of', 'computer', 'system', 'response', 'time']
d3 : [the'. 'eps', 'user', 'interface', 'management', 'system']
d1 : ['human', 'machine', 'interface','for', 'abc', 'computer', 'applications']
```


Word-document matrix

Items	minors	human		Word dimensions				eps	survey	time
			graph	trees	user	interface	response			
d8	1	0	1	1	0	0	0	0	0	0
d9	1	0	1	0	0	0	0	0	1	0
d6	0	0	0	1	0	0	0	0	0	0
d7	0	0	1	1	0	0	0	0	0	0
d4	0	1	0	0	0	0	0	1	0	0
d5	0	0	0	0	1	0	1	0	0	1
d2	0	0	0	0	1	0	1	0	1	1
d3	0	0	0	0	1	1	0	1	0	0
d1	0	1	0	0	0	1	0	0	0	0

Distance

Distance between words
Distance between documents

Distance metrics. Manhattan distance

$$
\begin{aligned}
& \operatorname{dist}(A, B)=|A \times 1-B \times 1|+|A \times 2-B \times 2| \\
& \operatorname{dist}(A, B)=3 \\
& \operatorname{dist}(B, C)=2
\end{aligned}
$$

For N dimensions:
$\operatorname{dist}(A, B)=$ SUM $_{(\text {(ifrom 1 to N })}|A x i-B x i|$

For similarity: $\operatorname{sim}(A, B)=1 / 1+\operatorname{dist}(A, B)$

Document similarities using Manhattan distance

```
execfile('manhattan.py')
    manhattan distance between documents d8 d9 = 2 and similarity = 0.3333333333
    manhattan distance between documents d6 d8 = 2 and similarity = 0.3333333333
    manhattan distance between documents d6 d9 = 4 and similarity = 0.2
    manhattan distance between documents d6 d7 = 1 and similarity = 0.5
    manhattar distance between documents d7 d8 = 1 and similarity = 0.5
    manhattan distance between documents d7 d9 = 3 and similarity =0.25
    manhattar distance between documents d4 d8 = 5 and similarity =0.1666666666
    manhattan distance between documents d4 d9 = 5 and similarity =0.1666666666
    manhattan distance between documents d4 d6 = 3 and similarity = 0.25
    manhattan distance between documents d4 d7 = 4 and similarity = 0.2
    manhattan distance between documents d4 d5 = 5 and similarity = 0.1666666666
    manhattan distance between documents d5 d8 = 6 and similarity =0.1428571428
    manhattan distance between documents d5 d9 = 6 and similarity = 0.1428571428
    manhattan distance between documents d5 d6 = 4 and similarity =0.2
```


Word similarity using Manhattan distance

manhattan distance between words minors trees $=3$ and similarity $=0.25$
manhattan distance between words minors survey $=2$ and similarity $=0.333333333333$
manhattan distance between words minors user $=5$ and similarity $=0.166666666667$
manhattan distance between words minors time $=4$ and similarity $=0.2$
manhattan distance between words minors response $=4$ and similarity $=0.2$
manhatta distance between words graph minors $=1$ and similarity $=0.5$
manhattan uistance jetweenworus grapil trees - 2 and sitmanty - 0.030333333333
manhattan distance between words graph survey $=3$ and similarity $=0.25$
manhattan dictance hetwoen worde graph ueer $=6$ and cimilarity $=0147857140857$
manhatta distance between words graph human $=5$ and similarity $=0.166666666667$
manhattan distance between words graph time $=5$ and similarity $=0.16666666667$
manhattan distance between words graph interface $=5$ and similarity $=0.166666666667$
manhattan distance between words human minors $=4$ and similarity $=0.2$
manhattan distance between words human trees $=5$ and similarity $=0.166666666667$
manhattan distance between words human survey $=4$ and similarity $=0.2$
manhattan distance between words human user $=5$ and similarity $=0.166666666667$
manhattan distance between words human time $=4$ and similarity $=02$
manhatta distance between words human interface $=2$ and similarity $=0.333333333333$

Distance metrics. Euclidean distance

$$
\begin{gathered}
\operatorname{dist}(A, B)=\operatorname{sqrt}\left(|A \times 1-B \times 1|^{2}+|A \times 2-B \times 2|^{2}\right) \\
\operatorname{dist}(A, B)=\operatorname{sqrt}(5) \\
\operatorname{dist}(B, C)=2
\end{gathered}
$$

For N dimensions:
$\operatorname{dist}(A, B)=\operatorname{sqrt}\left(S_{(\text {(ifrom } 1 \text { to } N)}|A x i-B x i|^{2}\right)$

For similarity: $\operatorname{sim}(A, B)=1 /(1+\operatorname{dist}(A, B))$

Document similarity using Euclidean distance

execfile('euclidean.py')

euclidean distance between documents d8 d9 $=1.41421356237$ and similarity $=0.414$
euclidean distance between documents d6 d8 =1.41421356237 and similarity $=0.414$
euclidean distance between documents d6 d9 $=2.0$ and similarity $=0.333333$
euclidean distance between documents d6 d7 = 1.0 and similarity $=0.5$
euclidean distance between documents $\mathrm{d} 7 \mathrm{~d} 8=1.0$ and similarity $=0.5$
euclidean distance between documents d7 d9 = 1.73205080757 and similarity $=0.366$
euclidean distance between documents d4 d8 $=2.2360679775$ and similarity $=0.309$
euclidean distance between documents d4 d9 $=2.23606 / 9 / 75$ and similarity $=0.309$
euclidean distance between documents d4 d6 $=1.73205080757$ and similarity $=0.366$
euclidean distance between documents $d 4 \mathrm{~d} 7=2.0$ and similarity $=0.33333$
euclidean distance between documents d4 d5 = 2.2360679775 and similarity $=0.309$
euclidean distance between documents d5 d8 $=2.44948974278$ and similarity $=0.289$
euclidean distance between documents d5 d9 $=2.44948974278$ and similarity $=0.289$
euclidean distance between documents d5 d6 $=2.0$ and similarity $=0.3333$
euclidean distance between documents $\mathrm{d} 5 \mathrm{~d} 7=2.2360679775$ and similarity $=0.309$

Word similarity using Euclidean distance

euclidean distance between words minors trees $=1.73205080757$ and similarity $=0.366025403784$
euclidean distance between words minors survey $=1.41421356237$ and similarity $=0.414213562373$
euclidean distance between words minors user $=2.2360679775$ and similarity $=0.309016994375$
euclidean distance between words minors time $=2.0$ and similarity $=0.333333333333$
euclidean distance between words minors response $=2.0$ and similarity $=0.33333333333$
euclidean distance between words graph minors $=1.0$ and similarity $=0.5$ euclidean aistance jetweenworus grapil trees - 1.41421000201 and simmanty $=0.414213562373$ euclidean distance between words graph survey $=1.73205080757$ and similarity $=0.366025403784$ euclidean distance between words araph user $=2.44948974278$ and similaritv $=0.289897948557$ euclidean distance between words graph human $=2.2360679775$ and similarity $=0.309016994375$ euclidean distance between words graph time $=2.23606 / 9 / 75$ and similarity $=0.3090169943 / 5$ euclidean distance between words graph interface $=2.2360679775$ and similarity $=0.309016994375$ euclidean distance between words human minors $=2.0$ and similarity $=0.33333333333$
euclidean distance between words human trees $=2.2360679775$ and similarity $=0.309016994375$
euclidean distance between words human survey $=2.0$ and similarity $=0.333333333333$ euclidean distance between words human user $=2.2360679775$ and similarity $=0.309016994375$ euclidean dictonoo hotwoon worde human timo - 20 and cimilarity - 0323232323232 euclidean distance between words human interface $=1.41421356237$ and similarity $=0.414213562373$ euclidean distance between words human response $=2.0$ and similarity $=0.33333333333$

Distance metrics. Pearson correlation

A correlation is a number between - 1 and +1 that measures the degree of association between two variables A positive value for the correlation implies a positive association (large values of x 1 tend to be associated with large values of $x 2$ and small values of $x 1$ tend to be associated with small values of $x 2$). A negative value for the correlation implies a negative or inverse association

D and B are perfectly correlated in dimensions x1,x2.
Pearson coefficient is 1.0
$\operatorname{sim}(D, B)=1$
$\operatorname{dist}(D, B)=1-\operatorname{sim}(D, B)=0$
D and C are perfectly uncorrelated in dimensions $\times 1, x 2$.
Pearson coefficient is -1.0
$\operatorname{sim}(D, B)=-1$
$\operatorname{dist}(D, B)=1-(-1)=2$

Distance metrics. Pearson correlation

Document similarity using Pearson distance

```
execfile('pearson.py')
pearson distance between documents d8 d9 = 0.047619047619 and similarity = 0.952380952381
pearson distance between documents d6 d8 = 0.272607032547 and similarity = 0.727392967453
pearson distance between documents d6 d9 = 1.0 and similarity = 0.0
pearson distance between documents d6 d7 = 0.166666666667 and similarity =0.833333333333
pearson distance between documents d7 d8 = 0 and similarity = 1.0
pearson distance between documents d7 d9 = 0.45445527441 and similarity = 0.54554472559
pearson distance between documents d4 d8 = 1.0 and similarity = 0.0
pearson distance between documents d4 d9 = 1.0 and similarity =0.0
pearson distance between documents d4 d6 = 1.0 and similarity = 0.0
pearson distance between documents d4 d7 = 1.0 and similarity = 0.0
pearson distance between documents d4 d5 = 1.0 and similarity = 0.0
pearson distance between documents d5 d8 = 1.0 and similarity =0.0
pearson distance between documents d5 d9 = 1.0 and similarity = 0.0
pearson distance between documents d5 d6 = 1.0 and similarity =0.0
pearson distance between documents d5 d7 = 1.0 and similarity =0.0
```


Word similarity using Pearson distance

```
pearson distance between words minors trees = 0.433053290486 and similarity=0.566946709514
pearson distance between words minors survey = 0.357142857143 and similarity=0.642857142857
pearson distance between words minors user = 1.0 and similarity =0.0
pearson distance between words minors time = 1.0 and similarity =0.0
pearson distance between words minors response = 1.0 and similaritv =0.0
pearsor distance between words graph minors = 0 and similarity = 1.0
pearson distance between words graph trees =0.5 and similarity =0.5
pearson distance between words graph survey = 0.433053290486 and similarity= 0.566946709514
pearson dictonco hotwonon worde groph ucor-15 and cimilarity - n 5
pearson distance between words graph human = 1.0 and similarity =0.0
pearson distance between words graph interface = 1.0 and similarity =0.0
pearson distance between words graph response =1.0 and similarity = 0.0
pearson distance between words human minors = 1.0 and similarity =0.0
pearson distance between words human trees = 1.0 and similarity = 0.0
pearson distance between words human survey = 1.0 and similarity =0.0
pearson distance between words human user = 1.0 and similarity =0.0
pearson dictance hotwoen words human time = 1 0 and cimilarity = 0 0 
pearson distance between words human interface =0.357142857143 and similarity =0.642857142857
pearson distance between words human response = 1.0 and similarity = 0.0
```


Distance metrics. Cosine similarity

$\operatorname{sim}(\mathbf{A}, \mathbf{B})=\operatorname{cosine}(\mathrm{AOB})=$ $\left(A^{*} B\right) /\left(|A|^{*}|B|\right)$

The bigger cosine, the less is the angle, the more similar are 2 vectors

```
sim(A,B)=[0*2+1*2]/[1*sqrt(8)] =0.71
dist(A,B)=1-\operatorname{sim}(A,B)=0.29
sim(D,B)=(1*2+1*2)/(sqrt(2)*sqrt(8))
=4/4=1.0
dist(D,B)=0
sim}(A,C)=(0*2+2*0)/(1*2)=
dist(A,C)=1
```


Document similarity using Cosine similarity

> execfile('cosine.py')
cosine distance between documents $\mathrm{d} 8 \mathrm{~d} 9=0.33333333333$ and similarity $=0.66666666667$
cosine distance between documents d6 d8 $=0.42264973081$ and similarity $=0.57735026919$
cosine distance between documents d6 d9 $=1.0$ and similarity $=0.0$
cosine distance between documents d6 d7 $=0.292893218813$ and similarity $=0.707106781187$
cosine distance between documents $\mathrm{d} 7 \mathrm{~d} 8=0.183503419072$ and similarity $=0.816496580928$
cosine distance between documents $\mathrm{d} 7 \mathrm{~d} 9=0.591751709536$ and similarity $=0.408248290464$
cosine distance between documents d4 d8 = 1.0 and similarity $=0.0$
cosine distance between documents d4 d9 = 1.0 and similarity $=0.0$
cosine distance between documents $\mathrm{d} 4 \mathrm{~d} 6=1.0$ and similarity $=0.0$
cosine distance between documents $d 4 d 7=1.0$ and similarity $=0.0$
cosine distance between documents $\mathrm{d} 4 \mathrm{~d} 5=1.0$ and similarity $=0.0$
cosine distance between documents $\mathrm{d} 5 \mathrm{~d} 8=1.0$ and similarity $=0.0$
cosine distance between documents d5 d9 $=1.0$ and similarity $=0.0$
cosine distance between documents $\mathrm{d} 5 \mathrm{~d} 6=1.0$ and similarity $=0.0$
cosine distance between documents $\mathrm{d} 5 \mathrm{~d} 7=1.0$ and similarity $=0.0$.

Word similarity using Cosine similarity

cosine distance between words minors trees $=0.591751709536$ and similarity $=0.408248290464$ cosine distance between words minors cosine distance between words minors survey $=0.5$ and similarity $=0.5$ cosine distance between words minors user $=1.0$ and similarity $=0.0$ cosine distance between words minors response $=1.0$ and similarity $=0.0$ time $=1.0$ and similarity $=0.0$ cosine distance between words graph minors $=0.183503419072$ and similarity $=0.816496580928$ cosine distance between words graph trees $=0.333333333333$ and similarity $=0.66666666666$ cosine distance between words graph user $=1.0$ and similarity $=0.0$ cosine distance between words graph human $=1.0$ and similarity $=0.0$ cosine aistance oetween woras grapn time $=1.0$ and smmarity $=0.0$ cosine distance between words graph interface $=1.0$ and similarity $=0.0$ cosine distance between words graph response $=1.0$ and similarity $=0.0$ cosine distance between words human minors $=1.0$ and similarity $=0.0$ cosine distance between words human trees $=1.0$ and similarity $=0.0$ cosine distance between words human survey $=1.0$ and similarity $=0.0$ cosine distance between words human user $=1.0$ and similarity $=0.0$ cosine distance hetween words human time $=10$ and similarity $=00$ cosine distance between words human interface $=0.5$ and similarity $=0.5$ cosine distance between words human response $=1.0$ and similarity $=0.0$

Distance metrics. Tanimoto coefficient

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Jaccard coefficient

Tanimoto coefficient is a Jaccard coefficient for binary attributes

$$
T(A, B)=\frac{A \cdot B}{\|A\|^{2}+\|B\|^{2}-A \cdot B}
$$

$\operatorname{sim}(A, B)=[0 * 2+1 * 2] /\left[1+8-\left(0^{*} 2+1 * 2\right)\right]$
$=2 / 7=0.285$
$\operatorname{dist}(A, B)=1-\operatorname{sim}(A, B)=0.715$

Document similarity using Tanimoto coefficient

execfile('tanimoto.py')

Word similarity using Tanimoto coefficient

tanimoto distance between words minors trees $=0.75$ and similarity $=0.25$
tanimoto distance between words minors survey $=0.666666666667$ and similarity $=0.333333333333$
tanimoto distance between words minors user $=1.0$ and similarity $=0.0$
tanimoto distance between words minors response $=1.0$ and similarity $=0.0$ tanimoto distance between words graph minors $=0.333333333333$ and similarity $=0.66666666667$
tanimoto
tanimoto distance between words graph survey $=0.75$ and similarity $=0.25$
tanimoto distance between words graph user $=1.0$ and similarity $=0.0$
tanimotodiotanoo botwoon wordo graph timo-1.0 and oimilarity - 0.0
tanimoto distance between words graph interface $=1.0$ and similarity $=0.0$
tanimoto distance between words graph response $=1.0$ and similarity $=0.0$
tanimoto distance between words human minors $=1.0$ and similarity $=0.0$
tanimoto distance between words human trees $=1.0$ and similarity $=0.0$
tanimoto distance between words human survey $=1.0$ and similarity $=0.0$
tanimoto distance between words human user $=1.0$ and similarity $=0.0$
tanimoto distance between words human time $=1.0$ and similarity $=0.0$
tanimote distance between words human interface $=0.66666666667$ and similarity $=0.333333333333$
tanimoto uistance jetween worus inuman iesponse - 1.0 andu simmaity - 0.0

What is the best distance metric for clustering documents?

manhattan distance between documents $\mathrm{d} 7 \mathrm{~d} 8=1$ and similarity $=0.5$
manhattan distance between documents $\mathrm{d} 4 \mathrm{~d} 8=5$ and similarity $=0.166666666$
euclidean distance between documents $\mathrm{d} 7 \mathrm{~d} 8=1.0$ and similarity $=0.5$
euclidean distance between documents $\mathrm{d} 4 \mathrm{~d} 8=2.2360679775$ and similarity $=0.309$
pearson distance between documents $\mathrm{d} 7 \mathrm{~d} 8=0$ and similarity $=1.0$
pearson distance between documents d4 d8 $=1.0$ and similarity $=0.0$
cosine distance between documents $\mathrm{d} 7 \mathrm{~d} 8=0.183503419072$ and similarity $=0.816496580928$ cosine distance between documents $\mathrm{d} 4 \mathrm{~d} 8=1.0$ and similarity $=0.0$
tanimoto distance between documents $\mathrm{d} 7 \mathrm{~d} 8=0.33333333333$ and similarity $=0.66666666667$
tanimoto distance between documents $\mathrm{d} 4 \mathrm{~d} 8=1.0$ and similarity $=0.0$

Hierarchical clustering

The implementation can be read in file clusters.py:
hcluster(data,distance)

K-means clustering

The implementation can be read in file clusters.py:
kcluster(data,distance,k):

Clustering titles

```
Read file 'hclustertitles.py'
```

```
import clusters
```

import clusters
docs,words,data=clusters.readfile('titlesdata.txt')
docs,words,data=clusters.readfile('titlesdata.txt')
clust=clusters.hcluster(data,distance=clusters.pearson)
print 'clusters by pearson correlation'
clusters.printclust(clust,labels=docs)
clusters.drawdendrogram(clust,docs,jpeg='docsclustpearson.jpg')

```
execfile('hclustertitles.py')

Read file 'kmlustertitles.py'
```

docs,words,data=clusters.readfile('titlesdata.txt')
print '2 clusters:'
clust=clusters.kcluster(data,distance=clusters.pearson,k=2)
print 'clusters by pearson correlation'
print 'cluster 1:'
print [docs[r] for r in clust[0]]
print 'cluster 2:'
print [docs[r] for r in clust[1]]

```
execfile('kmclustertitles.py')

\section*{Hierarchical clustering results for titles}


\section*{Clustering words}
```

Read file 'hclusterwords.py'
import clusters docs,words,data=clusters.readfile('titlesdata.txt') rdata=clusters.rotatematrix(data)
clust=clusters.hcluster(rdata,distance=clusters.pearson) print 'clusters by pearson correlation' clusters.printclust(clust,labels=words) clusters.drawdendrogram(clust,words,jpeg='wordsclustpearson.jpg')

```

Read file 'kmclusterwords.py'
```

idocs,words,data=clusters.readfile('titlesdata.txt')
rdata=clusters.rotatematrix(data)
print '3 clusters:'
clust=clusters.kcluster(rdata,distance=clusters.pearson,k=3)
print 'clusters by pearson correlation'
print 'cluster 1:'
print [words[r] for r in clust[0]]
print 'cluster 2:'
print [words[r] for r in clust[1]]
print 'cluster 3:'
print [words[r] for r in clust[2]]

```

\section*{Hierarchical clustering results for words}


\section*{Task 1. Improve k-mean clustering results}
- Try to improve k-mean clustering results on words and titles

\section*{Task 2. Download blog data}
- Almost all blogs can be read online or via their RSS feeds. An RSS feed is a simple XML document that contains information about the blog and all the entries. The first step in generating word counts for each blog is to parse these feeds. Fortunately, there is an excellent module for doing this called Universal Feed Parser, which you can download from http://www.feedparser.org
- This module makes it easy to get the title, links, and entries from any RSS or Atom feed. The next step is to create a function that will extract all the words from a feed.
- execfile ("generatefeedvector.py") OR
- use file "blogdata1.txt"

\section*{Task 3. Perform hierarchical clustering on blogs}
- Create and execute script similar to 'hclustertitles.py' for word-document matrix of file 'blogdata1.txt'

\section*{Task 4. Clustering of preferences}
- File 'zebo.txt' contains list of items people would like to have. This list has been downloaded from zebo.com WEB site.
- Perform hierarchical clustering on 'zebo.txt' data.
-What groups of items people want?```

