

Genetic Algorithm in Python

Data mining lab 6

When to use genetic algorithms
John Holland (1975)

● Optimization: minimize (maximize) some function f(x) over all possible values of
variables x in X

● A brute force: examining every possible combination of x in X in order to determine
the element for which f is optimal: infeasible

● Optimization techniques are heuristic.

● The problem of local maximum (minimum).

Mutation introduces randomness in the method to get out of trap

Evolution
● There is a population of individuals with

randomly chosen values of variables (features)
● There are some environmental conditions which

demand from an individual to have certain
features

● The individuals which have the features which
are best suited for these conditions have
advantage over other individuals, they survive
till the reproductive age and reproduce

Variation – the pool for the evolution
● The best suited individuals (the fittest) survive,

reproduce and mix their features with other
surviving individuals

● In the simplest model, they contribute part of
the features to a new individual in the next
generation, and another part comes from a
second parent

● The new individual can undergo the process of
mutation – random change of one of his
features. This occurs rarely.

Genetic algorithm: the main steps I
1. Create population of

random individuals

2. Choose fitness function:
to evaluate how good is a
particular individual for a
specific purpose defined by
a specific problem

3. Run several iterations
(generations)

elite

Genetic algorithm: the main steps II
5. The next generation consists of:

Unchanged elite (parthenogenesis)

Individuals which combine features
of 2 elite parents (recombinant)

Small part of elite individuals
changed by random mutation

6. Repeat steps 4, 5 until no more
significant improvement in the fitness
of elite is observed

"Hello World" program for genetic
algorithms

● Simple example: random population of strings
evolves into a predefined template “Hello
World”

● For simplicity:
● random strings have the same length as the target

string
● Fitness function is calculated as the closeness of

the given string to the target string

Fitness function
def string_fitness (individual):
 fitness=0
 for ipos in range (0,target_length):
 fitness+=abs(ord(individual[ipos])
 - ord (TARGET_STRING[ipos]))
 return fitness

Basically, all this does it goes through each member of the population and compares it
with the target string. It adds up the differences between the characters and uses the
cumulative sum as the fitness value (therefore, the lower the value, the better).

For comparison: random optimizer

● Random searching isn't a very good optimization method, but it
makes it easy to understand exactly what all the algorithms are trying
to do, and it also serves as a baseline so you can see if the other
algorithms are doing a good job.

● The random optimizer in random_optimize.py randomly generates
202,800 random guesses and applies a fitness function for each
guess. It keeps track of the best guess (the one with the lowest cost)
and returns it.

from ga_helloworld import *
string_population=init_strings_population(204800)
best_rand=randomoptimize(string_population,
 string_fitness)
print best_rand[1]
print " score = %d" % best_rand[0]

Mutation operation for GA
def mutate_string(individual):
 ipos=random.randint(0,target_length-1)
 #mutation changes character at random to any available
 ASCII character from 32 (space) to 90 (Z)
 rchar=chr(random.randint(0,32000)%90 + 32)
 individual=individual[0:ipos]+rchar+individual[(ipos+1):]
 return individual

ipos – random position

random character

0:ipos ipos+1:

Mate operation (crossover) for GA
def string_crossover(p1,p2):
 ipos=random.randint(1,target_length-2)
 return p1[0:ipos]+p2[ipos:]

+

ipos – random position

Genetic algorithm I
def genetic_optimize(population,fitness_function,mutation_function,
 mate_function, mutation_probability, elite, maxiterations):
How many winners from each generation?
 original_population_size=len(population)
 top_elite=int(elite*original_population_size)
 # Main loop
 for i in range(maxiterations):
 individual_scores=[(fitness_function(v),v)
 for v in population]
 individual_scores.sort()
 ranked_individuals=[v for (s,v) in individual_scores]
 # Start with the pure winners
 population=ranked_individuals[0:top_elite]

Genetic algorithm II
Add mutated and bred forms of the winners
 while len(population)<original_population_size:
 if random.random()<mutation_probability:
 # Mutation
 c=random.randint(0,top_elite)
 population.append(mutation_function
 (ranked_individuals[c]))
 else:
 # Crossover
 c1=random.randint(0,top_elite)
 c2=random.randint(0,top_elite)
if individual_scores[0][0]==0:
 return individual_scores[0][1]
return individual_scores[0][1]

Running genetic optimizer
from ga_helloworld import *
string_population=init_strings_population(2048)
genetic_optimize(string_population, string_fitness,
 mutate_string, string_crossover, 0.25,0.1,100)

mutation rate elite percentage max iterations

More useful problem: group travel
people = [('John','BOS'),
 ('Mary','DAL'),
 ('Laura','CAK'),
 ('Abe','MIA'),
 ('Greg','ORD'),
 ('Lee','OMA')]

LaGuardia airport in New York
destination='LGA'

The family members are from
all over the country and wish
to meet up in New York.

They will all arrive on the
same day and leave on the
same day, and they would
like to share transportation to
and from the airport.

There are about 9 flights per
day to New York from any of
the family members'
locations, all leaving at
different times.

The flights also vary in price
and in duration.

Flight information
● The information about flights is in file

schedule.txt
● This file contains

origin, destination, departure time, arrival time,
and price
for a set of flights in a comma-separated format:

LGA,MIA,20:27,23:42,169
MIA,LGA,19:53,22:21,173
LGA,BOS,6:39,8:09,86
BOS,LGA,6:17,8:26,89
LGA,BOS,8:23,10:28,149

Adding flight info to the dictionary
flights={}
for line in file('schedule.txt'):
 origin,dest,depart,arrive,price
 =line.strip().split(',')
 flights.setdefault((origin,dest),[])
 # Add details to the list of possible flights
 flights[(origin,dest)].append(
 (depart,arrive,int(price)))
flights_index_range=[(0,9)]*(len(people)*2)

dictionary keydictionary key dictionary value: flight details variants
(list of size 10 for each key)

Representing solutions
● A very common representation is a list of numbers. In this

case, each number can represent which flight a person
chooses to take, where 0 is the first flight of the day, 1 is
the second, and so on.

● Since each person needs an outbound flight and a return
flight, the length of this list is twice the number of people.

For example, the list:
[1,4,3,2,7,3,6,3,2,4,5,3]

Represents a solution in which John takes the second flight of
the day from Boston to New York, and the fifth flight back to
Boston on the day he returns. Mary takes the fourth flight
from Dallas to New York, and the third flight back. Those are
the positions in a list of flight details, we can interpret the flight
details knowing this index and origin and destination of the
flight

Fitness function design I
● The fitness function is the key to solving any

problem using optimization, and it's usually the
most difficult thing to determine.

● The goal of any optimization algorithm is to find
a set of inputs—flights, in this case—that
minimizes the cost function, so the cost function
has to return a value that represents how bad a
solution is.

● There is no particular scale for badness; the
only requirement is that the function returns
larger values for worse solutions.

Fitness function design II
● Price

The total price of all the plane tickets, or possibly a weighted average
that takes financial situations into account.

● Travel time

The total time that everyone has to spend on a plane.
● Waiting time

Time spent at the airport waiting for the other members of the party to
arrive.

● Departure time

Flights that leave too early in the morning may impose an additional cost
by requiring travelers to miss out on sleep.

● Car rental period

If the party rents a car, they must return it earlier in the day than when
they rented it, or be forced to pay for a whole extra day.

def schedule_fitness(sol):
 totalprice=0
 latestarrival=0
 earliestdep=24*60
 for d in range(len(sol)/2):
 origin=people[d][1]
 outbound = flights[(origin,destination)][int(sol[2*d])]
 returnf = flights[(destination,origin)][int(sol[2*d+1])]
 # Total price is the price of all outbound and return flights
 totalprice+=outbound[2]
 totalprice+=returnf[2]
 # Track the latest arrival and earliest departure
 if latestarrival<getminutes(outbound[1]):

 latestarrival =getminutes(outbound[1])
 if earliestdep>getminutes(returnf[0]):
 earliestdep=getminutes(returnf[0])

Fitness function I
John Mary Laura Abe Greg Lee

out in

people

solution

Fitness function II
Every person must wait at the airport until the latest person arrives.
They also must arrive at the same time and wait for their flights on the way
back.
 totalwait=0
 for d in range(len(sol)/2):
 origin=people[d][1]
 outbound = flights[(origin,destination)][int(sol[2*d])]
 returnf = flights[(destination,origin)][int(sol[2*d+1])]
 totalwait+=latestarrival-getminutes(outbound[1])
 totalwait+=getminutes(returnf[0])-earliestdep
 # Does this solution require an extra day of car rental? That'll be $50!
 if latestarrival < earliestdep: totalprice+=5
 return totalprice+totalwait

Execute GA for schedule
optimization

execfile ("ga_schedule.py")

How much better is the solution comparing to the random optimizer?

Tuning GA
● We could choose several variants of the

algorithm, namely: breeding elite with the entire
population, 2-points crossover etc.

● In order to have fine grained control over the
computation, we have to adjust parameters
such as population size, percentage of elite,
mutation rate... Obviously these must be set
empirically in order to fine tune the performance
of the GA.

Other problems
● Suggest optimization problems which can be

efficiently solved with genetic algorithm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

