Classifiers: toy example of decision tree

Data mining lab 3

Input data

skin	color	size	flesh	class
1 hairy	brown	large	hard	safe
2 hairy	green	large	hard	safe
3 sm ooth	red	large	soft	dangerous
4 hairy	green	large	soft	safe
5 hairy	red	small	hard	safe
6 sm ooth	red	small	hard	safe
7 sm ooth	brown	small	hard	safe
8 hairy	green	small	soft	dangerous
9 sm ooth	green	small	hard	dangerous
10 hairy	red	large	hard	safe
11 sm ooth	brown	large	soft	safe
12 sm ooth	green	small	soft	dangerous
13 hairy	red	small	soft	safe
14 sm ooth	red	large	hard	dangerous
15 sm ooth	red	small	hard	safe
16 hairy	green	small	hard	dangerous

Query: hairy skin, red color, large with soft flesh. The question is: is it safe to eat this unknown animal?

Decision tree classifier

- We can split the data based on any given nominal (non-numeric) attribute
- We compute the entropy (purity) of the tree nodes after the split and we choose the split wich gives the smallest average entropy for all the tree nodes created after the split

Split on skin quality

Averaged entropy of the split on skin attribute=8/16 * 0.24 + 8/16 * 0.30 = 0.27

Split on color

Entropy for the node [color:brown]= $-3/3 \log (3/3)=0$

Averaged entropy of the split on color attribute=7/16 * 0.28 + 6/16 * 0.15 = **0.17**

Split on size

size	flesh	class
large	hard	safe
large	hard	safe
large	soft	dangerous
large	soft	safe
small	hard	safe
small	hard	safe
small	hard	safe
small	soft	dangerous
small	hard	dangerous
large	hard	safe
large	soft	safe
small	soft	dangerous
small	soft	safe
large	hard	dangerous
small	hard	safe
small	hard	dangerous

Entropy for the node [size:small]= $-5/7 \log (5/7) - 2/7 \log (2/7) = 0.26$ Entropy for the node [size:large]= $-5/9 \log (5/9) - 4/9 \log (4/9) = 0.30$

Averaged entropy of the split on size=7/16 * 0.26 + 9/16 * 0.30 = 0.28

Split on flesh flesh flesh class safe hard safe hard dangerous soft 0 0 safe soft 0 0 hard safe hard: safe soft: hard 7 safe safe hard 3 safe 3 dangerous soft dangerous 3 dangerous hard dangerous safe hard soft safe soft dangerous soft safe dangerous hard

Entropy for the node [flesh:hard]=-7/10 log $(7/10) - 3/10 \log(3/10) = 0.27$ Entropy for the node [flesh:soft]=-3/6 log $(3/6)-3/6 \log(3/6)=0.33$

safe

hard

Averaged entropy of the split on flesh=10/16 * 0.27 + 6/16 * 0.33 = 0.29

The best split: the smallest entropy of the nodes after the split. We choose this split to be a root node of the decision tree

Splitting node: color=red

color=red

skin	size	flesh	class
3 smooth	large	soft	dangerous
5 hairy	small	hard	safe
6 smooth	small	hard	safe
10 hairy	large	hard	safe
13 hairy	small	soft	safe
14 smooth	large	hard	dangerous
15 smooth	small	hard	safe

Entropy of the node [skin=smooth]=-2/4 log 2/4 - 2/4 log 2/4=0.30 Entropy of the node [skin=hairy]=-3/3 log 3/3 =0 Averaged entropy of the split on skin=4/7 *0.30 = 0.17 best

Entropy of the node [size=large]=-1/3 log 1/3 - 2/3 log 2/3=0.28 Entropy of the node [size=small]=-4/4 log 4/4 =0 Averaged entropy of the split on size=3/7 * 0.28 = **0.12**

Entropy of the node [flesh=soft]=-1/2 log 1/2 - 1/2 log 1/2=0.30 Entropy of the node [flesh=hard]=-4/5 log 4/5 - 1/5 log 1/5=0.22 Averaged entropy of the split on flesh=2/7 *0.30 +5/7*0.22 = 0.24

Results of the split:

Splitting node: color=green

color=green

skin	size	flesh	
2 hairy	large	hard	\$
4 hairy	large	soft	5
8 hairy	small	soft	(
9 smooth	small	hard	(
12 smooth	small	soft	(
16 hairy	small	hard	(

class safe safe dangerous dangerous dangerous dangerous

Entropy of the node [skin=smooth]=-2/2 log 2/2 =0 Entropy of the node [skin=hairy]=-2/4 log 2/4-2/4 log 2/4 =0.30 Averaged entropy of the split on skin=4/6 *0.30 = 0.20

Entropy of the node [size=large]=-2/2 log 2/2 =0 Entropy of the node [size=small]=-4/4 log 4/4 =0 Averaged entropy of the split on size=**0.00**

Entropy of the node [flesh=soft]=-1/3 log 1/3 - 2/3 log 2/3=0.28 Entropy of the node [flesh=hard]=-1/3 log 1/3 - 2/3 log 2/3=0.28 Averaged entropy of the split on flesh=3/6 *0.28 +3/6*0.28 = **0.28** The best

Results of the split:

The final tree

Classify:

hairy skin, red color, large with soft flesh: safe

