Consider the following transactional dataset:

TID	Items
1	$\{B, M\}$
2	$\{A, B, D, E\}$
3	$\{A, C, D, M\}$
4	$\{A, B, D, M\}$
5	$\{B, C, D, M\}$

Find all frequent 2-itemsets with minsupport count=2.

Generate candidate frequent 3-itemsets using $C_{3}=F_{2} \times F_{1}$ candidate generation method

Prune candidates which cannot be frequent

All lexicographically sorted items: $I=\{A, B, C, D, E, M\}$

Support counts for 1-itemsets:
\{A\}: 3
$\{\mathrm{B}\}: 4$
\{C\}: 2
\{D\}: 4
\{E\}: 1

Frequent 1-itemsets:
\{A\}: 3
\{B\}: 4
\{C\}: 2
\{D\}: 4
\{M\}: 4
\{M\}: 4

Support counts
for 2-itemsets
$\{\mathrm{A}, \mathrm{B}\}: 2$
\{A, C\}: 1
\{A, D\}: 3
\{A, M\}: 2
$\{B, C\}: 1$
\{B, D\}: 3
\{B, M \}: 3
\{C, D\}: 2
\{C, M\}: 2
\{D, E\}: 1
\{D, M\}: 3
Frequent 2-itemsets:
$\{A, B\}: 2$
$\{\mathrm{A}, \mathrm{D}\}: 3$
\{A, M\}: 2
\{B, D\}: 3
\{B, M\}: 3
\{C, D\}: 2
\{C, M $\}$: 2
\{D, M\}: 3
Candidate generation C_{3}
$\{A, B, C\}$-since $\{A, C\}$ is not frequent
$\{A, B, D\}$
$\{A, B, M\}$
$\{A, D, M\}$
$\{B, D, M\}$
\{C, D, M \}

Frequent 2-itemsets:
$\{\mathrm{A}, \mathrm{B}\}: 2$
$\{\mathrm{A}, \mathrm{D}\}: 3$
\{A, M\}: 2
$\{B, D\}: 3$
\{B, M\}: 3
\{C, D\}: 2
\{C, M $\}$: 2
\{D, M\}: 3

Frequent 1-itemsets:
\{A\}: 3
\{B\}: 3
\{C\}: 2
\{D\}: 4
$x \quad\{\mathrm{M}\}: 4$

