CSCI 485. Introduction to data mining. Spring 2012.

Midterm exam (Solutions)

1. Consider two possible splits of training records during the decision tree induction.

A

B

Figure 1. Possible splits of training records according to attributes A and B. Black and white colors represent class labels.
a. What is the entropy of each split? Which split produces more pure nodes? (2 points):

Entropy $(\mathrm{A})=6 / 10 *\left(-5 / 6 * \log (5 / 6,2)-1 / 6^{*} \log (1 / 6,2)\right)+4 / 10^{*}(-$
$4 / 4 * \log (4 / 4,2))=0.39$
Entropy $(\mathrm{B})=5 / 10^{*}\left(-3 / 5^{*} \log (3 / 5,2)-2 / 5^{*} \log (2 / 5,2)\right)+5 / 10 *\left(-2 / 5^{*} \log (2 / 5,2)-\right.$ $\left.3 / 5^{*} \log (3 / 5,2)\right)=0.97$

Split A produces more pure nodes.
b. What is the information gain of each split? (1 point)

Entropy(All)=-5/10* $\log (5 / 10,2)-5 / 10 * \log (5 / 10,2)=1$

Info gain (A)=1-0.39=0.61
Info gain (B)=1-0.97=0.03
2. The following figure is a Bayesian belief network for the weather data summarized in Table 1. (Assume that all attributes are binary).

Outlook	Temp	Play
Sunny	Hot	Yes
Rainy	Cold	No
Sunny	Hot	Yes
Rainy	Cold	No
Rainy	Hot	No
Rainy	Cold	No
Rainy	Cold	No
Rainy	Hot	Yes

Table 1. Dataset for Question 2
a. Draw the probability table for each node in the network (3 points).
b. Apply Laplace correction (to all values) (1 point)
c. What is the probability of Play=Yes on a hot day? (2 points)
$\mathrm{P}(\mathrm{y} \mid \mathrm{h}, \mathrm{S})=\mathrm{P}(\mathrm{y}) * \mathrm{P}(\mathrm{S} \mid \mathrm{y}) * \mathrm{P}(\mathrm{h} \mid \mathrm{y}, \mathrm{S}) * \alpha$

$$
=P(y) * P(s \mid y) * P(h \mid y, s)+P(y) * P(-s \mid y) * P(h \mid y,-s) * \alpha
$$

$$
=4 / 10 * 3 / 5 * 3 / 4+4 / 10 * 2 / 5 * 2 / 3 * \alpha=0.29 * \alpha
$$

$$
\begin{aligned}
& P(-y \mid h, S)=P(\neg y) * P(S \mid-y)^{* P}(h \mid-y, S) * \alpha \\
& =P(\neg y) * P(s \mid-y) * P(h \mid-y, s)+P(-y) * P(\neg s \mid-y) * P(h \mid \neg y,-s) * \alpha \\
& \quad=6 / 10 * 1 / 7 * 1 / 2+6 / 10 * 6 / 7^{*} 2 / 7^{*} \alpha=0.19^{*} \alpha
\end{aligned}
$$

$0.19 \alpha+0.29 \alpha=1.0$

$$
\begin{aligned}
& \alpha=1.0 / 0.48=2.08 \\
& P(y \mid E)=2.08 * 0.29=60.4 \% \\
& P(\neg y \mid E)=2.08 * 0.19=39.6 \%
\end{aligned}
$$

Probability of play on a hot day is 60.4%

Conditional probability tables:

Play	
y	$3 / 8$
$7 y$	$5 / 8$

Play	
y	$4 / 10$
$-y$	$6 / 10$

	Outlook	
Play	s	$-s$
y	$2 / 3$	$1 / 3$
$-y$	$0 / 5$	$5 / 5$

	Outlook	
Play	s	$\neg s$
y	$3 / 5$	$2 / 5$
$-y$	$1 / 7$	$6 / 7$

		Temp	
Play	Outlook	h	-h
y	s	$2 / 2$	$0 / 2$
y	-s	$1 / 1$	$0 / 1$
-y	s	$0 / 0$	$0 / 0$
-y	-s	$1 / 5$	$4 / 5$

		Temp	
Play	Outlook	h	$-h$
y	s	$3 / 4$	$1 / 4$
y	$\neg s$	$2 / 3$	$1 / 3$
$-y$	s	$1 / 2$	$1 / 2$
$-y$	$\neg s$	$2 / 7$	$6 / 7$

3. The fraction of undergraduate students who smoke is 15% and the fraction of graduate students who smoke is 25%. One-fifth of the University students are graduate students and the rest are undergraduates.
a. What is the probability that a student who smokes is a graduate student? (2 points)
$\mathrm{P}(\mathrm{g} \mid \mathrm{s})=\alpha^{*} \mathrm{P}(\mathrm{s} \mid \mathrm{g}) * \mathrm{P}(\mathrm{g})=\alpha^{*} 0.25^{*} 0.20=0.05 \alpha$
$\mathrm{P}(\neg \mathrm{g} \mid \mathrm{s})=\alpha^{*} \mathrm{P}(\mathrm{s} \mid \neg \mathrm{g}) * \mathrm{P}(\neg \mathrm{g})=\alpha^{*} 0.15^{*} 0.80=0.12 \alpha$
$0.05 \alpha+0.12 \alpha=1.00$
$\alpha=5.88$
$P(g \mid s)=5.88 * 0.05=29.4 \%$
b. Does this probability change if we manage to reduce the number of smokers to 3% and 5% in undergrads and grads respectively? What is the value of this new probability (that a student who smokes is a graduate student)? (2 points)

The value is the same - 29.4\%
4. We have compared two classifiers through cross-validation on 5 different datasets (folds).

The success rates are:

Dataset	Classifier A	Classifier B	Difference
1	89.4	89.8	-0.4
2	90.2	90.6	-0.4
3	88.7	88.2	0.5
4	90.3	90.9	-0.6
5	91.2	91.7	-0.5

Which classifier is significantly better at significance level 10\%? (2 points) $\mathrm{m}_{\mathrm{d}}=(-0.4-0.4+0.5-0.6-0.5) / 5=-0.28$
$\mathrm{s}^{2}=\left(2^{*}(-0.4+0.28)^{\wedge} 2+(-0.5+0.28)^{\wedge} 2+(0.5+0.28)^{\wedge} 2+(-0.6+0.28)^{\wedge} 2\right) / 4=0.197$
$\sigma=\operatorname{sqrt}(0.197)=0.44$
HO : no difference $0 \pm \mathrm{t} * \sigma / \operatorname{sqrt}(\mathrm{N})$

$$
0.44 / \text { sqrt(5)*2.353=0.46 }
$$

The difference (-0.28) is not significant at significance level 10%
T-table (pre-computed values of Student's distribution)

One Sided	90%	95%	97.5%	99%	99.5%	99.75%	99.9%	99.95%
Two Sided	80%	90%	95%	98%	99%	99.5%	99.8%	99.9%
$\mathbf{1}$	3.078	6.314	12.71	31.82	63.66	127.3	318.3	636.6
$\mathbf{2}$	1.886	2.920	4.303	6.965	9.925	14.09	22.33	31.60
$\mathbf{3}$	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92
$\mathbf{4}$	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
$\mathbf{5}$	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869

