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Error rate 

• Natural performance measure for classification 
problems: error rate

– Success: instance’s class is predicted correctly

– Error: instance’s class is predicted incorrectly

– Error rate: proportion of errors made over the 
whole set of instances



Resubstitution (training) error

• Training error - error rate obtained from training 
data. 

Resubstitution error is (hopelessly) optimistic!



Error rate on test set

• Test set: independent instances that have played no 
part in formation of classifier

– Assumption: both training data and test data are 
representative samples of the underlying problem

• Generally, the larger the training data the better the 
classifier

• The larger the test data the more accurate the error 
estimate
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Test set?

• Simple solution that can be used if lots of (labeled) 
data is available:

– Split data into training and test set

• However: (labeled) data is usually limited

– More sophisticated techniques need to be used



Making the most of the data
• Holdout procedure: method of splitting original data into 

training and test set

– Dilemma: ideally both training set and test set should be 
large!

• The holdout method reserves a certain amount for testing and 
uses the remainder for training

– Usually: one third for testing, the rest for training

• Problem: the samples might not be representative

– Example: class might be missing in the test data

• Advanced version uses stratification

– Ensures that each class is represented with approximately 
equal proportions in both subsets



Repeated holdout method

• Holdout estimate can be made more reliable by 
repeating the process with different subsamples

– In each iteration, a certain proportion is randomly 
selected for training (possibly with stratificiation)

– The error rates on the different iterations are 
averaged to yield an overall error rate

• This is called the repeated holdout method

• Still not optimum: the different test sets overlap

– Can we prevent overlapping?



Cross-validation
• Cross-validation avoids overlapping test sets

– First step: split data into k subsets of equal size

– Second step: use each subset in turn for testing, the 
remainder for training

• Called k-fold cross-validation

• Often the subsets are stratified before the cross-
validation is performed

• The error estimates are averaged to yield an overall 
error estimate

• Standard method for evaluation: stratified 10-fold 
cross-validation



Leave-One-Out cross-validation

• Leave-One-Out:
a particular form of cross-validation:

– Set number of folds to number of training 
instances

– I.e., for n training instances, build classifier n times

• Makes best use of the data

• Involves no random subsampling

• But, computationally expensive



Leave-One-Out-CV and stratification

• Disadvantage of Leave-One-Out-CV: stratification is 
not possible

– It guarantees a non-stratified sample because there 
is only one instance in the test set!

• Extreme example: completely random dataset split 
equally into  two classes

– Best inducer predicts majority class

– 50% accuracy on fresh data 

– Leave-One-Out-CV estimate is 100% error!



The bootstrap
• Cross Validation uses sampling without replacement

– The same instance, once selected, can not be 
selected again for a particular training/test set

• The bootstrap uses sampling with replacement to form 
the training set

– Sample a dataset of n instances n times with 
replacement to form a new dataset of n instances

– Use this data as the training set

– Use the instances from the original dataset that 
don’t occur in the new training set for testing

• Also called the 0.632 bootstrap (Why?)



The 0.632 bootstrap

• A particular instance has a probability of 1–1/n of not 
being picked

• Thus its probability of ending up in the test data is:

• This means the training data will contain 
approximately 63.2% of the instances
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Estimating error
with the bootstrap

• The error estimate on the test data will be very 
pessimistic: trained on just ~63% of the instances

• Therefore, combine it with the training error:

The training error gets less weight than the error on the 
test data

• Repeat process several times with different replacement 
samples; average the results

• Probably the best way of estimating performance for 
very small datasets
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Predicting true performance

• Assume the estimated error rate is 25%. How close is this to 
the true error rate?

– Depends on the amount of test data

• Prediction is just like tossing a (biased!) coin

– “Head” is a “success”, “tail” is an “error”

• In statistics, a succession of independent events like this is 
called a Bernoulli process

– Statistical theory provides us with confidence intervals for 
the true underlying proportion



Predicting performance interval
• We can say: p – probability of success of a classifier – lies within a certain 

specified interval with a certain specified confidence

• Example: S=750 successes in N=1000 trials

– Estimated success rate: 75%

– How close is this to the true success rate p?

• Answer: with 80% confidence p[73.2,76.7]

• Another example: S=75 and N=100

– Estimated success rate: 75%

– With 80% confidence p[69.1,80.1]

• I.e. the probability that p[69.1,80.1] is 0.8.

• Bigger the N more precise we are in our evaluation, i.e. the surrounding 
interval is smaller.
– Above, for N=100 we were less confident than for N=1000.



Predicting performance interval

• How do we compute the predicted interval of classifier’s 
success for a certain level of confidence?

• There is a large number of samples to be classified in the 
future. Out of this population we tested classifier only on 
N instances (N-the size of our test set).



• Let Y be the random variable with possible values 

1 for success and 

0 for error. 

• Let probability of success be p. 

• Then probability of error is q=1-p.

• What’s the mean of the Y distribution?

μ=1*p + 0*q = p

• What’s the variance of Y distribution?

σ2=(1-p)2*p + (0-p)2*q

= q2*p+p2*q

= pq(p+q) 

= pq(p+1-p)

=pq

Success as a random variable

0 1

q
p

μ =p

True distribution of 
classification success

We do not know µ=p at this point!



Distribution of sampling means

0 1

q
p

μ =p

True probability distribution 
of Y in the entire population 

Distribution of sampling 
averages  𝑥 for N=10

We can take a random sample of size N from the 
entire population of Y values. The average of this 
one sample,      , might be close to the real mean 
µ, and might be not. 
However, if we perform many random samplings, 
and plot the average of each sampling, the 
sampling averages would have normal distribution

x



Distribution of sampling means
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True distribution of 
classification success

μ
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=μ=p

Distribution of 
sampling averages  𝑥
for N=10

σ
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Distribution of 
sampling averages  𝑥
for N=100

σ
 𝑥

μ
 𝑥
=μ=p

Given large enough number of samplings, the mean of sampling averages will 
approach the real mean of the entire population



Standard deviation of sampling means
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Distribution of 
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The standard deviation will be smaller if the size of each sample is larger – the larger is each 
sample, the less is the error of estimating the real mean from this sample



Standard deviation of sampling means
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Distribution of 
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The dots, where each dot represents a mean of a particular sample, will fall closer to the real 
mean, if the size of each sample is large



Formula for standard deviation of the 
distribution of sampling means
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μ =p

True distribution of 
classification success
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Distribution of 
sampling averages  𝑥
for N=10

σ  𝑥
= σ/ 10
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Distribution of 
sampling averages  𝑥
for N=100

σ  𝑥
= σ/10

σ
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μ
 𝑥
=μ=p

If you take N=100 samples, you are 
much closer to the real mean than if 
you take N=2.

Turns out that: σ2
 𝑥
= σ2/N

Variance of the sampling mean 
distribution is inversely proportional 
to the size of the sample N



Computing performance interval. 
Example

• How do we compute the predicted interval of classifier’s success 
for a certain level of confidence?

• We sampled 100 instances: 75 correctly classified.

• Sample mean:  

 𝑥=(1*75+0*25)/100=0.75

• Sample variance:

S2=[ 75*(1-0.75)^2+25*(0-0.75)^2 ]/ N-1=0.19

Adjustor – so we do not 
underestimate sample 
variance



Computing performance interval. 
Example

• How do we compute the predicted interval of classifier’s success 
for a certain level of confidence?

• We sampled 100 instances: 75 correctly classified.

• Sample mean:  

 𝒙=(1*75+0*25)/100=0.75

• Sample variance:

s2=[ 75*(1-0.75)^2+25*(0-0.75)^2 ]/ N-1=0.19

• Sample standard deviation:

s=sqrt(0.19)=0.435



Computing performance interval. 
Example

• N=100 instances: 75 correctly classified.

• Sample standard deviation: s=0.435

• We estimate the true standard deviation 
σ by sample standard deviation s

• Now we can estimate one standard 
deviation of the distribution of sampling 
means: 

σ  𝒙
= s/sqrt(N)=0.435/10=0.0435

μ
 𝑥
=μ=p

σ
 𝑥



Computing performance interval. 
Example

σ  𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

80 %

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ  𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

We want the upper part (above mean) to be 
40%, since normal distribution is symmetric. 

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

40 %

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ  𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

The probability of the variable to be less 
than the upper mark is 40+50=90%

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

90 %

?

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ  𝒙
= 0.0435

The probability of the variable to be less than the 
upper mark is 40+50=90%

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

90 %

?

z 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .500 .504 .508 .512 .516 .520 .524 .528 .532 .536

0.1 .540 .544 .548 .552 .556 .560 .564 .568 .571 .575

0.2 .580 .583 .587 .591 .595 .599 .603 .606 .610 .614

0.3 .618 .622 .626 .630 .633 .637 .641 .644 .648 .652

0.4 .655 .659 .663 .666 .670 .674 .677 .681 .684 .688

0.5 .692 .695 .699 .702 .705 .709 .712 .716 .719 .722

0.6 .726 .729 .732 .736 .740 .742 .745 .749 .752 .755

0.7 .758 .761 .764 .767 .770 .773 .776 .779 .782 .785

0.8 .788 .791 .794 .797 .800 .802 .805 .808 .811 .813

0.9 .816 .819 .821 .824 .826 .829 .832 .834 .837 .839

1.0 .841 .844 .846 .849 .851 .853 .855 .858 .850 .862

1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883

1.2 .885 .887 .889 .891 .893 .894 .896 .898 .900 .902

1.3 .903 .905 .907 .908 .910 .912 .913 .915 .916 .918

Z-table

How many 
standard 
deviations 
above the 
mean

Cumulative 
probability up to 
this point



Computing performance interval. 
Example

σ  𝒙
= 0.0435

Our sample mean is less than real mean plus 1.28 
standard deviations with probability 90%

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

90 %

?

z 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .500 .504 .508 .512 .516 .520 .524 .528 .532 .536

0.1 .540 .544 .548 .552 .556 .560 .564 .568 .571 .575

0.2 .580 .583 .587 .591 .595 .599 .603 .606 .610 .614

0.3 .618 .622 .626 .630 .633 .637 .641 .644 .648 .652

0.4 .655 .659 .663 .666 .670 .674 .677 .681 .684 .688

0.5 .692 .695 .699 .702 .705 .709 .712 .716 .719 .722

0.6 .726 .729 .732 .736 .740 .742 .745 .749 .752 .755

0.7 .758 .761 .764 .767 .770 .773 .776 .779 .782 .785

0.8 .788 .791 .794 .797 .800 .802 .805 .808 .811 .813

0.9 .816 .819 .821 .824 .826 .829 .832 .834 .837 .839

1.0 .841 .844 .846 .849 .851 .853 .855 .858 .850 .862

1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883

1.2 .885 .887 .889 .891 .893 .894 .896 .898 .900 .902

1.3 .903 .905 .907 .908 .910 .912 .913 .915 .916 .918

Z-table



Computing performance interval. 
Example

σ  𝒙
= 0.0435

Our sample mean is less than real mean plus 1.28 
standard deviations with probability 90%

Our sample mean  𝑥=0.75 falls within 1.28 σ  𝑥
from 

the real mean μ=p 

or

the real mean μ=p is within 1.28 σ  𝑥
from the sample 

mean  𝑥=0.75.

The real mean μ=p is between:

[  𝑥 - 1.28 σ  𝑥
,  𝑥 - 1.28 σ  𝑥

]

[0.75-1.28*0.0435, 0.75+1.28*0.0435]

[0.69, 0.805]

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

90 %

?



Computing performance interval. 
Result

The real mean μ=p is between:

[0.69, 0.805] with the probability 80%

We can say that with confidence 80% the 
correctness of our classifier on real datasets 
is between 69% and 80.5%

Confidence – is a level of reliability of 
estimating the population parameter (in 
this case, the mean of the real population, 
μ=p) from the sample data.

We may also say that the result [0.69, 
0.805] is statistically significant with 
significance level 10%: significance=100%-
confidence

μ
 𝑥
=μ=p

σ
 𝑥

μ
 𝑥
=μ=p

σ
 𝑥

80 %



Computing confidence interval of 
classifier’s success rate in practice

• Estimate real standard deviation by computing 
sample standard deviation:

σ2≈Σi
N(meanX-xi)

2/(N-1)

• For confidence interval C, find z-value for C/2+0.5 
(from the z-table)

• Real µ=p is within:
C/2+0.5

z-value

N
zxp
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