Instance-based learning

Lecture 7

Important:

Similarity and distance metrics

Memory-based reasoning

Reasoning from experience: ability to recognize similar examples from the past

- This person is from Australia, since it speaks like other Australians I have met before
- This mushroom is poisonous since it seems similar to

Amanita muscaria

Memory-based reasoning

Reasoning from experience:

- The most effective treatment for a given patient is the treatment which was effective in similar cases, on similar patients
- The next customers who are likely to respond to a promotion are similar to the previous customers who have responded

Classification by similarity

" If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck."

New classifier: nearest neighbor

- Remember all your data
- When a new record comes:
 - Find the most similar old data point (the nearest neighbor)
 - Return the answer associated with it

Predicting Bankruptcy

Predicting Bankruptcy

 Now, let's say we have a new person with R equal to 0.3 and L equal to 2.

And so our answer would be "no".

Classification goes wrong.

Remedy: K-Nearest Neighbors

- K-nearest neighbor algorithm:
 - Just like the old algorithm, except that when we get a query, we'll search for the k closest points to the query points.

Remedy: K-Nearest Neighbors

- Combine the output from k neighbors:
 - In this case, we've chosen k to be 3.
 - The three closest points consist of two "no"s and a "yes", so we combine them using the majority voting

K-Nearest Neighbor: design issues

- Choosing the *distance* function
- Choosing optimal *number of neighbors*
- Choosing the *combination function* to combine neighbors' class

K-Nearest Neighbor: design issues

- Choosing the distance function
 - Choosing optimal number of neighbors
 - Choosing the combination function to combine neighbors' class

- Well-defined: the distance between two instances is always defined and is a non-negative real number: d(A,B) ≥ 0
- Identity: The distance from one instance to itself is always zero: d(A,A)=0
- 3. Commutativity: Direction does not change the distance, so the distance from A to B is the same as the distance from B to A (no one-way roads)
- Triangle inequality: Visiting an intermediate point C on the way from A to B never shortens the distance, so d(A,B) ≤ d(A,C)+d(C,B)

• Well-defined: $d(A,B) \ge 0$

Every record has a neighbor somewhere in the database

• Identity: d(A,A)=0

The most similar record to a given record is the original record itself

- Commutativity: d(A,B)=d(B,A)
- Triangle inequality: $d(A,B) \le d(A,C)+d(C,B)$

Make nearest-neighbors local and well-behaved: adding a new record into a database will not bring an existing record any closer Building a distance function: one field at a time

- Distance between 2 points in geometry is well defined
- What is *the distance between instances*?

• The answer is: find distance for each attribute separately and combine

Distance between numeric values in one dimension (for a single attribute)

- D(A,B)=?
- D(B,C)=?
- D(A,C)=?

- D(A,B)=|50,000-100,000|=50,000
- D(B,C)=|100,000-120,000|=20,000
- D(A,C)=|50,000-120,000|=70,000

Distance between categorical (binary) values in one dimension

- D(A,B)=?
- D(B,C)=?
- D(A,C)=?

Distance between categorical (binary) values in one dimension

- D(A,B)=0
- D(B,C)=100%
- D(A,C)=100%

Distance for other data types: American ZIP codes

- A 5-digit American ZIP code cannot be treated as numeric
- A ZIP code does encode location information
 - First 3 digits represent a postal zone: (100,101,102
 Manhattan)
 - Zip codes increase from East to West: begin with 0 in New England and with 9 on the west coast

Task: Design customer distance function for ZIP codes

Distance for other data types: American ZIP codes

- Design customer distance for ZIP codes:
 - D(A,B)=0 if A=B
 - D(A,B)=0.1 if 3 first digits are identical (20008 20015)
 - D(A,B)=0.5 if the first digits are identical (95050 98125)
 - D(A,B)=1.0 if the first digits differ

Note: Real distance can be retrieved as the longitude and the latitude from the Postal Codes database

Meaningful choice

The choice of a distance metric depends on context, and is not mechanical

Combined distance metrics for multiple dimensions

- Manhattan distance
- Euclidean distance
- Pearson correlation
- Cosine
- Jaccard index

Combined distance metrics for multiple dimensions

- Manhattan distance
- Euclidean distance
- Pearson correlation

The examples are in 2 dimensions, but the definitions are for *n* dimensions (attributes)

Taxicab (Manhattan) distance

- The sum of the distances across each dimension
- The distance between two points when only movement along the grid lines is allowed

Distance metrics. Manhattan distance

Distance metrics. Manhattan distance

Euclidean distance

- The "ordinary" distance between two points that one would measure with the ruler
- Computed from coordinates using Pythagorean theorem

Scaling problem

- Heterogeneous variables cause distance problems
- We need a way to normalize actual values so it makes sense to consider them all in the same space

Scaling dimensions

• Rescale the values to put all of the features on about equal footing:

Scaling dimensions

 $a_i = \frac{v_i - \min(all \ v)}{\max(all \ v) - \min(all \ v)}$

For Age: $a_i = (v_i - 25)/(31 - 25)$ For Salary: $a_i = (v_i - 50,000)/(200,00 - 50,00)$

K-Nearest Neighbor: design issues

- Choosing the distance function
- Choosing optimal number of neighbors
 - Choosing the combination function to combine neighbors' class

How many neighbors?

- Vary *K* from 1 to N
- Use cross-validation to find optimal value of K

Example: Leave-one-out cross validation

K=1

Error rate: 5/14

Example: Leave-one-out cross validation

Choose K for which the error rate is minimized

K-Nearest Neighbor: design issues

- Choosing the distance function
- Choosing optimal number of neighbors
- Choosing the combination function to combine neighbors' class

The combination function: asking neighbors for answer

- Majority voting
- Weighted voting

The combination function: democracy

The basic approach: each neighbor casts its vote for its own class:

Predicted class is "No"

The combination function: democracy

For a binary class use odd number of neighbors to avoid ties

The combination function: democracy

The proportion of votes can be used as a probability that a new instance belongs to the majority class

The combination function: weighted voting

- The neighbors are not all created equal more like shareholder democracy
- The size of the vote is inversely proportional to the distance from a new record, so closer neighbors have stronger votes than neighbors farther away do

To prevent problems when the distance might be 0, it is common to add 1 to the distance before scaling and before taking an inverse

The combination function: weighted voting

1/0.5 Yes+1/1 No + 1/1.5 No=2 Yes + 1.7 No = Yes

The closets neighbor outweighs the majority class

K-NN algorithm. Summary

- The training set *is a* model
- Advantages:
 - No need to build a model
 - Adding new records no need to rebuild the model
 - Interpretable: we always know why– we know all the neighbors
 - Good in predicting numeric values
 - More flexible (non-rectilinear) decision boundaries
- Disadvantages:
 - The query is computationally expensive

K-NN Algorithm. Time and space

- Learning is fast
 - We just have to remember the training data.
- Space is N.
- What takes longer is answering a query: If we do it naïvely, we have to, for each point in our training set (and there are N of them) compute the distance to the query point (which takes about M computations, since there are M features to compare).
- So, overall, this takes about *M* x *N* time.

K-NN improvements

- 1. IB2: save memory, speed up classification
- 2. IB3: deal with noise

IB2 main idea

- Work incrementally
- Only incorporate misclassified instances

Example: IB2

IB2 output: We memorize only these 5 points.

Age

•

- Continuing in a similar way, we finally get a smaller set to memoriz:.
 - The colored points are the ones that get memorized.

IB2 summary

- Work incrementally
- Only incorporate misclassified instances

• Problem: noisy data might get incorporated

IB3 main idea

- Discard instances that don't perform well
- Keep a record of the number of correct and incorrect classification decisions that each exemplar makes.
- Two predetermined thresholds are set on success ratio. An instance is kept if:
 - If the number of incorrect classifications is \leq the negative threshold ϵ
 - If the number of correct classifications \geq the positive threshold γ .

- Suppose the lower threshold ε=0, and the upper threshold γ=1.
- Shuffle the original dataset:
 - (25,60,no)
 - (85,140,yes)
 - (45,60,no)
 - (30,260,yes)
 - (50,75,no)
 - (50,120,no)
 - (70,110,yes)
 - (25,400,yes)
 - (50,100,no)
 - (45,350,yes)
 - (50,275,yes)
 - (60,260,yes)

Age

Age

What do we discard?

IB3 summary

- Discard instances that don't perform well
- Keep a record of the number of correct and incorrect classification decisions that each exemplar makes.
- After all instances have been added keep only the ones with:
 - The number of incorrect classifications is $\leq \epsilon$
 - If the number of correct classifications $\geq \gamma$.

A nearest neighbor approach to making recommendations

Knowing that lots of people liked something is not enough. *Who* liked is important.

Underworld: Awakening 3D

<u>Reviews</u> - <u>Trailer</u> - <u>IMDb</u>

1hr 28min - Rated 18-A - Action/Adventure/Scifi/Fantasy/Horror - English Director: Mans Marlind - Cast: Kate Beckinsale, Scott Speedman, India Eisley, Charles Dance, Michael Ealy - :

Selene escapes imprisonment to find herself in a world where humans have discovered the existence of both Vampire and Lycan clans, and are conducting an allout war to eradicate both immortal species.

Collaborative filtering

Recommendation vs. prediction

Automated recommender system

- Build a customer profile
- Compare the new customer's profile with the profiles of other customers, locate similar "neighbors"
- Predict the rating that the new customer would give to items he has not yet rated by combining ratings of a peer group selected by similar tastes
- Rank predictions and output top-scored ones

Automated recommender system

► 1. Build a customer profile

- Compare the new customer's profile with the profiles of other customers, locate similar "neighbors"
- Predict the rating that the new customer would give to items he has not yet rated by combining ratings of a peer group selected by similar tastes
- 4. Rank predictions and output top-scored ones

Customer profile: sparsity

- Each customer is represented as a vector with one element per each item
 - Rating on a scale 0 1
 - Null for 'no opinion'
- Much more items than ratings (thousands of items at Amazon)
- Profile is sparse: most entries are Null

Creating customer profile

A reasonable approach: have new customers rate a list of 20 or so most frequently rated items and then free them to rate additional items as they please

Netflix.ca

Creating customer profile

At least for a set of predefined items, we have ratings for most of the users – basis for finding similarities

Automated recommender system

- Build a customer profile
- Compare the new customer's profile with the profiles of other customers, locate similar "neighbors"
 - Predict the rating that the new customer would give to items he has not yet rated by combining ratings of a peer group selected by similar tastes
 - Rank predictions and output top-scored ones

Sample input: movies ratings

critics = {

- 'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just my Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},
- 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just my Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, 'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0},

{'Snakes on a Plane': 3.5, 'Claudia Puig' 'Just my Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, 'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just my Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, 'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0. 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, {'Snakes on a Plane': 4.5, 'Toby': 'Superman Returns': 4.0, 'You, Me and Dupree': 1.0} }

Finding Similar Users: distance

 Find similar users by calculating Euclidean distance in a space where each movie is a dimension: the smaller the distance, the more similar are the users

Similar ratings

Both users rank 'Superman' higher than 'Dupree'

Similar ratings

Large values of ratings for the same movie for Gene tend to be associated with large values for Mick, small values – with small values

New similarity measure: Pearson Correlation Score The correlation coefficient is a measure of how well two sets of data fit on a straight line.

Pearson correlation vs. Euclidean distance

Two critics with a high correlation score.

- Corrects for grade inflation.
 - E.g., Jack Matthews tends to give higher scores than Lisa Rose, but the line still fits because they have relatively similar preferences.
- Euclidean distance score will say they are quite dissimilar – far away

The correlation ranges from

- -1 (perfect negative correlation) to
- 1 (perfect positive correlation).
- 0 no correlation.

Automated recommender system

- Build a customer profile
- Compare the new customer's profile with the profiles of other customers, locate similar "neighbors"
- Predict the rating that the new customer would give to items he has not yet rated by combining ratings of a peer group selected by similar tastes
 - Rank predictions and output top-scored ones

Ranking the critics

- Using Pearson similarity score, rank all critics vs. Active User
- The top-K list of similar users is exactly K nearest neighbors
- But instead of predicting a score for a single item, we get the scores for all items which similar users ranked

Top similar users for 'Toby', K=5: [(0.99124070716192991, 'Lisa Rose'), (0.92447345164190486, 'Mick LaSalle'), (0.89340514744156474, 'Claudia Puig')]

Automated recommender system

- Build a customer profile
- Compare the new customer's profile with the profiles of other customers, locate similar "neighbors"
- Predict the rating that the new customer would give to items he has not yet rated by combining ratings of a peer group selected by similar tastes

Rank predictions and output top-scored ones

Example: recommendations for Toby

Collect all rankings from similar users

Ranks for movies which Toby did not see yet

	<u> </u>			V		<u> </u>	
Critic	Similarity	Night	S.xNight	Lady	S.xLady	Luck	S.xLuck
Rose	0.99	3.0	2.97	2.5	2.48	3.0	2.97
Seymour	0.38	3.0	1.14	3.0	1.14	1.5	0.57
Puig	0.89	4.5	4.02			3.0	2.68
LaSalle	0.92	3.0	2.77	3.0	2.77	2.0	1.85
Matthews	0.66	3.0	1.99	3.0	1.99		
Total			12.89		8.38		8.07
Sim.Sum			3.84		2.95		3.18
Total/Sim. Sum			3.35		2.83		2.53

Compute predicted rank for each movie: weighted average

	Movie rating multiplied by similarity								
Critic	Similarity	Night	S.xNig	Lady	S.xLady	Luck	S.xLuck		
Rose	0.99	3.0	2.97	2.5	2.48	3.0	2.97		
Seymour	0.38	3.0	1.14	3.0	1.14	1.5	0.57		
Puig	0.89	4.5	4.02			3.0	2.68		
LaSalle	0.92	3.0	2.77	3.0	2.77	2.0	1.85		
Matthews	0.66	3.0	1.99	3.0	1.99				
Total			12.89		8.38		8.07		
Sim.Sum			3.84		2.95		3.18		
Total/Sim. Sum			3.35		2.83		2.53		

Compute predicted rank for each movie: total weighted sum

Critic	Similarity	Night	S.xNight		Lady	S.xLady	Luck	S.xLuck
Rose	0.99	3.0	2.97		2.5	2.48	3.0	2.97
Seymour	0.38	3.0	1.14		3.0	1.14	1.5	0.57
Puig	0.89	4.5	4.02	-			3.0	2.68
LaSalle	0.92	3.0	2.77		3.0	2.77	2.0	1.85
Matthews	0.66	3.0	1.99		3.0	1.99		
Total			12.89)		8.38		8.07
Sim.Sum			3.84			2.95		3.18
Total/Sim. Sum			3.35			2.83		2.53

Compute predicted rank for each movie: total weighted sum

Critic	Similar	ity	Night	S.xNight	Lady	S.xLady	Luck	S.xLuck
Rose	0.99		3.0	2.97	2.5	2.48	3.0	2.97
Seymour	0.38		3.0	1.14	3.0	1.14	1.5	0.57
Puig	0.89	K	4.5	4.02			3.0	2.68
LaSalle	0.92		3.0	2.77	3.0	2.77	2.0	1.85
Matthews	0.66		3.0	1.99	3.0	1.99		
Total				12.89		8.38		8.07
Sim.Sum			(3.84		2.95		3.18
Total/Sim. Sum				3.35		2.83		2.53

Total weight of critics participated in the score

Normalize each ranking

Critic	Simila	rity	Night	S.xNight	Lady	S.xLady	Luck	S.xLuck
Rose	0.99		3.0	2.97	2.5	2.48	3.0	2.97
Seymour	0.38		3.0	1.14	3.0	1.14	1.5	0.57
Puig	0.89	R	4.5	4.02			3.0	2.68
LaSalle	0.92		3.0	2.77	3.0	2.77	2.0	1.85
Matthews	0.66		3.0	1.99	3.0	1.99		
Total				12.89		8.38		8.07
Sim.Sum				3.84		2.95		3.18
Total/Sim. Sum			(3.35		2.83		2.53

Total normalized by the weight of users participating in this recommendation

Sort descending and output rankings with maximum score

Critic	Similarity	Night	S.xNight	Lady	S.xLady	Luck	S.xLuck
Rose	0.99	3.0	2.97	2.5	2.48	3.0	2.97
Seymour	0.38	3.0	1.14	3.0	1.14	1.5	0.57
Puig	0.89	4.5	4.02			3.0	2.68
LaSalle	0.92	3.0	2.77	3.0	2.77	2.0	1.85
Matthews	0.66	3.0	1.99	3.0	1.99		
Total			12.89		8.38		8.07
Sim.Sum			3.84		2.95		3.18
Total/Sim. Sum		(3.35		2.83		2.53
Recommendations for Toby

