Naïve Bayes classifier

Lecture 5

Mathematical predictions

- We can 'predict' where the spacecraft will be at noon in 2 months from now
- We cannot predict where you will be tomorrow at noon
- But, based on numerous observations, we can estimate the probability

Bayesian beliefs

- How do we judge that something is true?
- Can mathematics help make judgments more accurate?
- Bayes: our believes should be updated as new evidences become available

Bayes' method

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

Example (fictitious): hit-and-run

- 75 blue cabs (B) and 15 green cabs (G)
- $P(B): P(G)=5: 1$
- At night: hit-and-run episode
- Witness: "I saw a green cab": X_{G}
- Witness is tested at night conditions: identifies correct color 4 times out of 5

- Question: what is more probable:

$$
\begin{gathered}
\text { B or G } \\
?
\end{gathered}
$$

Probability

- Basic element: random variable e.g., Car is one of <blue, \neg blue(green)>

Weather is one of <sunny, rainy, cloudy,snow>

- Both Car and Weather are discrete random variables
- Domain values must be
- exhaustive (blue and green - are all the cabs)
- mutually exclusive (green is always not blue, there are no cars which are half green, half blue)
- Elementary propositions are constructed by the assignment of a value to a random variable:
e.g., Car $=\neg$ blue,

Weather = sunny

Conditional probability

- $P(A \mid B)$ - probability of event A given that event B has happened
- In our case we want to compare:
the car was G given a witness testimony $X_{G}: P\left(G \mid X_{G}\right)$ vs.
the car was B given a witness testimony $X_{G}: P\left(B \mid X_{G}\right)$

Prior probability and distribution

- Prior or unconditional probability associated with a proposition is the degree of belief accorded to it in the absence of any other information.
e.g.,

$$
\begin{array}{ll}
\mathrm{P}(\text { Car }=\text { blue })=0.83 & \text { (or abbrev. } \mathrm{P}(\text { blue })=0.83) \\
\mathrm{P}(\text { Weather }=\text { sunny })=0.7 & \text { (or abbrev. } \mathrm{P}(\text { sunny })=0.7)
\end{array}
$$

- Probability distribution gives probabilities of all possible value assignments:
$P($ Weather $=$ sunny $)=0.7$
$\mathrm{P}($ Weather $=$ rain $)=0.2$
$\mathrm{P}($ Weather $=$ cloudy $)=0.08$
$\mathrm{P}($ Weather $=$ snow $)=0.02$
- Sums up to 1.0

Two random events (not independent) happen at the same time $-P(A$ and $B)$

Possible event combinations when we know the outcome of event A :
$P(B \mid A)=1 / 12$ and $P(A)=1 / 2$

Possible event combinations when we know the outcome of event B :

$$
P(A \mid B)=1 / 4 \text { and } P(B)=1 / 6
$$

But in both cases $\mathrm{P}(\mathrm{A}$ and B$)$ is the same: orange area in the diagram

Intuition for Bayes's theorem

$P(A$ and $B)=P(A) * P(B \mid A)=P(B) * P(A \mid B)$

$\mathrm{P}(\neg \mathrm{A}$ and B$)=\mathrm{P}(\neg \mathrm{A}) * \mathrm{P}(\mathrm{B} \mid \neg \mathrm{A})=\mathrm{P}(\mathrm{B}) * \mathrm{P}(\neg \mathrm{A} \mid \mathrm{B})$

Bayes' theorem

$P(A) * P(B \mid A)=P(B) * P(A \mid B)$

$$
P(\neg A) * P(B \mid \neg A)=P(B) * P(\neg A \mid B)
$$

In other words:

Bayes' Rule for updating beliefs

$$
\begin{gathered}
P(A \mid B)=P(A) * P(B \mid A) / P(B) \\
\hline P(\neg A \mid B)=P(\neg A) * P(B \mid \neg A) / P(B)
\end{gathered}
$$

- We want to compare $P(A \mid B)$ and $P(\neg A \mid B)$, i.e. given evidence B what probability is higher: that A occurred or that $\neg A$ occurred?
- We know $P(A)$ and $P(\neg A)$ - prior probabilities
- We know $P(B \mid A)$ and $P(B \mid \neg A)$
- From Bayes' theorem:

$$
\begin{gathered}
P(A \mid B)=P(A) * P(B \mid A) / P(B) \\
P(\neg A \mid B)=P(\neg A) * P(B \mid \neg A) / P(B)
\end{gathered}
$$

Back to hit-and-run

What is more probable: B or G ?

- All cabs were on the streets: Prior probabilities: $P(B)=5 / 6, P(G)=1 / 6$
- The eyewitness test has shown:
$P\left(X_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(X_{G} \mid B\right)=1 / 5$ (incorrectly identified)

Hit-and-run: solution

$$
\begin{aligned}
& P(B)=5 / 6, P(G)=1 / 6 \\
& P\left(X_{G} \mid G\right)=4 / 5 \quad P\left(X_{G} \mid B\right)=1 / 5
\end{aligned}
$$

- Probability that car was green given the evidence X_{G} :

$$
\begin{aligned}
& P\left(G \mid X_{G}\right)=P(G)^{*} P\left(X_{G} \mid G\right) / P\left(X_{G}\right)=[1 / 6 * 4 / 5] / P\left(X_{G}\right)=4 / 30 P\left(X_{G}\right) \\
& \quad / /-4 \text { parts of } 30 P\left(X_{G}\right)
\end{aligned}
$$

- Probability that car was blue given the evidence X_{G} : $P\left(B \mid X_{G}\right)=P(B)^{*} P\left(X_{G} \mid B\right) / P\left(X_{G}\right)=[5 / 6 * 1 / 5] / P\left(X_{G}\right)=6 / 30 P\left(X_{G}\right)$ //- 6 parts of $30 P\left(X_{G}\right)$

6:4 odds that the car was B!

Probabilistic classifier

- Given the evidence (data), can we certainly derive the diagnostic rule:
if Toothache=true then Cavity=true ?

Name	Toothache	\ldots	Cavity
Smith	true	\ldots	true
Mike	true	\ldots	true
Mary	false	\ldots	true
Quincy	true	\ldots	false
\ldots	\ldots	\ldots	\ldots

- This rule isn't right always.
- Not all patients with toothache have cavities; some of them have gum disease, an abscess, etc.
- We could try an inverted rule:
if Cavity=true then Toothache=true
- But this rule isn't necessarily right either; not all cavities cause pain.

Certainty and Probability

- The connection between toothaches and cavities is not a certain logical consequence in either direction.
- However, we can provide a probability that given an evidence (toothache) the patient has cavity.
- For this we need to know:
- Prior probability of having cavity: how many times dentist patients had cavities: P(cavity)
- The number of times that the evidence (toothache) was observed among all cavity patients: P (toothache |cavity)

Bayes' Rule

for diagnostic probability

Bayes' rule:

$$
P(A \mid B)=P(A) * P(B \mid A) / P(B)
$$

- Useful for assessing diagnostic probability from symptomatic probability as:
P(Cause ${ }^{\text {Symptom })}=\mathrm{P}($ Symptom \mid Cause) $\mathrm{P}($ Cause $) / \mathrm{P}($ Symptom $)$
- Bayes's rule is useful in practice because there are many cases where we do have good probability estimates for these three numbers and need to compute the fourth.

Bayes rule application. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=$?

Bayes rule application. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=P(H \mid F) P(F) / P(H)$
$=1 / 2 * 1 / 40 * 10=1 / 8$

Bayes rule application. Example 2

WIN envelope

LOSE envelope

Someone draws an envelope at random and offers to sell it to you. How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

Bayes rule application. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope. Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

Bayes rule application. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose it's black: How much should you pay?
$P(W \mid b)=P(b \mid W) P(W) / P(b)=(1 / 2 * 1 / 2) / P(b)=1 / 4 * 1 / P(b)$
$P(L \mid b)=P(b \mid L) P(L) / P(b)=(2 / 3 * 1 / 2) / P(b)=1 / 3 * 1 / P(b)$
Probability to win is now 3:4-pay not more than $\$(3 / 7)$
Suppose it's red: How much shoưld you pay? - the same logic

Classifier based on Bayes rule

- We can build a classifier which will classify a new record as class C (yes or no) by comparing probabilities
- In this case all the attributes except C are evidences E
- The data-related task is to evaluate $P(E \mid C)$ from historical data and based on $P(E \mid C)$ and prior probabilities $P(C=Y e s)$ and $P(C=N o)$ compare $P(C=Y e s \mid E)$ and $P(C=N o \mid E)$ using Bayes rule.

Single-evidence classifier: priors

event
(class)

(class)	
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- Prior probabilities:
$P($ Play=yes $)=9 / 14, P($ play $=$ no $)=5 / 14$
- From recording only 'play'/'not play' we have 5:9 odds for play to be canceled today

Single-evidence classifier: evidence

evidenceevent (class)	
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- Priors: $P($ Play=yes $)=9 / 14, P($ play $=n o)=5 / 14$
- After adding evidence about Humidity we have: How many times Humidity=normal out of all 9 Yes's: 6 P(normal|yes)=6/9

How many times Humidity=normal out of all 5 No's: 1

$$
P(\text { normal } \mid \text { no })=1 / 5
$$

- Similarly:

$$
\begin{aligned}
& P(\text { high } \mid \text { yes })=3 / 9 \\
& P(\text { high } \mid \text { no })=4 / 5
\end{aligned}
$$

Single-evidence classifier: prediction

evidenceevent (class)	
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- $P($ yes $)=9 / 14, P(n o)=5 / 14$
- $P($ high \mid yes $)=3 / 9$
- $\mathrm{P}($ high \mid no $)=4 / 5$

Today is a high humidity day, what is the probability to play?

- $\mathrm{P}($ yes \mid high $)=\mathrm{P}(\text { yes })^{*} \mathrm{P}($ high \mid yes $) / \mathrm{P}($ high $)$
- $P($ no \mid high $)=P($ no $) * P($ high \mid no $) / P($ high $)$

Single-evidence classifier: prediction

evidenceevent (class)	
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

$P($ yes $)=9 / 14, P($ no $)=5 / 14$
$P($ high \mid yes $)=3 / 9$
$P($ high \mid no $)=4 / 5$

Today is a high humidity day, what is the probability to play?
$\mathrm{P}($ yes \mid high $)=\mathrm{P}($ yes $) * \mathrm{P}($ high \mid yes $) / \mathrm{P}($ high $)=$ [9/14*3/9] * 1/P(high) $=3 / 14 \alpha$
$\mathrm{P}($ no \mid high $)=\mathrm{P}($ no $) * \mathrm{P}($ high \mid no $) / \mathrm{P}($ high $)=[5 / 14 * 4 / 5]$ * $1 / \mathrm{P}(\mathrm{high})=4 / 14 \alpha$

4:3 odds not to play given high humidity (vs. 5:9 before evidence)

Bayes' rule - two evidences

Given that evidence1 is independent of evidence2:

```
P(class = A|evidence1, evidence2)
    = P(evidence1|class=A ) *P(evidence2|class=A )}*\textrm{P}(\mathrm{ class }=\textrm{A}), (P(\mathrm{ evidence }1)*\textrm{P}(\mathrm{ evidence }2)
    =\propto P}(\mathrm{ evidence1 |class = A ) * P}(\mathrm{ evidence 2 class = A ) * P}(\mathrm{ class = A )
```

 The same - let's call it \(1 / \alpha\)
    ```
P(class = B|evidence1, evidence2)
    = P(evidence1|class=B)*P(\mathrm{ evidence 2|class }=\textrm{B})*\textrm{P}(\mathrm{ class }=\textrm{B})
    = \propto P(evidence1|class = B ) * P(evidence2|class = B ) * P(class = B )
```


Bayes' rule - multiple evidences

Generalized for N evidences

```
P(class = A|evidence1, evidence2, ... ,evidenceN)
    =}\frac{\textrm{P}(\mathrm{ evidence }1\mathrm{ class=A })*\cdots*P(\mathrm{ evidence }N|\mathrm{ class }=\textrm{A})*\textrm{P}(\mathrm{ class }=\textrm{A})}{\textrm{P}(\mathrm{ evidence }1)*\cdots*\textrm{P}(\mathrm{ evidence }N)
    =\proptoP
```

- Two assumptions:

Attributes (evidences) are:

- equally important
- conditionally independent (given the class value)
- This means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute given the class value

Naïve Bayes classifier

To predict class value for a set of attribute values (evidences) for each class value compute and compare:

$$
\begin{aligned}
\mathrm{P}(\text { class }= & \mathrm{A} \mid \text { evidence } 1, \text { evidence } 2, \ldots, \text { evidenceN }) \\
& =\frac{\mathrm{P}(\text { evidence } 1 \text { class }=\mathrm{A}) * \cdots * \mathrm{P}(\text { evidence } N \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A})}{\mathrm{P}(\text { evidence }) * \cdots * \mathrm{P}(\text { evidence } N)} \\
& =\propto \mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{A}) * \cdots *(\text { evidenceN } \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A})
\end{aligned}
$$

- Naïve - assumes independence of variables
- Although based on assumptions that are almost never correct, this scheme works well in practice!

The weather data example

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Hot | High | False | No |
| Sunny | Hot | High | True | No |
| Overcast | Hot | High | False | Yes |
| Rainy | Mild | High | False | Yes |
| Rainy | Cool | Normal | False | Yes |
| Rainy | Cool | Normal | True | No |
| Overcast | Cool | Normal | True | Yes |
| Sunny | Mild | High | False | No |
| Sunny | Cool | Normal | False | Yes |
| Rainy | Mild | Normal | False | Yes |
| Sunny | Mild | Normal | True | Yes |
| Overcast | Mild | High | True | Yes |
| Overcast | Hot | Normal | False | Yes |
| Rainy | Mild | High | True | No |

- A new day:

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | $?$ |

Multi-evidence classifier

Set of evidences (demonstrate themselves)

The weather data example: probabilities

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | ? |

The weather data example: yes

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | ? |

$$
\begin{aligned}
& P(\text { yes } \mid E)= \\
& P(\text { Sunny | yes) * } \\
& P(\text { Cool | yes) * } \\
& P(\text { Humidity=High | yes) * } \\
& P(\text { Windy=True | yes) * } \\
& P(\text { yes }) / P(E)= \\
& =(2 / 9)^{*} \\
& (3 / 9)^{*} \\
& (3 / 9)^{*} \\
& (3 / 9)^{*} \\
& (9 / 14) / P(E)=0.0053 / P(E)
\end{aligned}
$$

| Play | Sunny | Cool | High
 humidity | Windy=
 true |
| :--- | ---: | ---: | ---: | ---: |
| Yes: 9 | $2 / 9$ | $3 / 9$ | $3 / 9$ | $3 / 9$ |
| No: 5 | $3 / 5$ | $1 / 5$ | $4 / 5$ | $3 / 5$ |
| Total | 5 | 4 | 7 | 6 |

Don't worry for the 1/P(E); It's alpha, the normalization constant.

The weather data example: no

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | ? |

$$
\begin{aligned}
& P(\text { no } \mid E)= \\
& P(\text { Sunny | no })^{*} \\
& P(\text { Cool | no })^{*} \\
& P(\text { Humidity }=\text { High | no })^{*} \\
& P(\text { Windy }=\text { True } \mid \text { no })^{*} \\
& P(\text { no }) / P(E)= \\
& =(3 / 5)^{*} \\
& (1 / 5)^{*} \\
& (4 / 5)^{*} \\
& (3 / 5)^{*} \\
& (5 / 14) / P(E)=0.0206 / P(E)
\end{aligned}
$$

| Play | Sunny | Cool | High
 humidity | Windy=
 true |
| :--- | ---: | ---: | ---: | ---: |
| Yes: 9 | $2 / 9$ | $3 / 9$ | $3 / 9$ | $3 / 9$ |
| No: 5 | $3 / 5$ | $1 / 5$ | $4 / 5$ | $3 / 5$ |
| Total | 5 | 4 | 7 | 6 |

The weather data example: decision

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | ? |

$$
\begin{aligned}
& P(\text { yes } \mid E)=0.0053 / P(E) \\
& P(\text { no } \mid E)=0.0206 / P(E)
\end{aligned}
$$

More probable: no.

It would be nice to give the actual probability estimates

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Hot | High | False | No |
| Sunny | Hot | High | True | No |
| Overcast | Hot | High | False | Yes |
| Rainy | Mild | High | False | Yes |
| Rainy | Cool | Normal | False | Yes |
| Rainy | Cool | Normal | True | No |
| Overcast | Cool | Normal | True | Yes |
| Sunny | Mild | High | False | No |
| Sunny | Cool | Normal | False | Yes |
| Rainy | Mild | Normal | False | Yes |
| Sunny | Mild | Normal | True | Yes |
| Overcast | Mild | High | True | Yes |
| Overcast | Hot | Normal | False | Yes |
| Rainy | Mild | High | True | No |

Normalization constant 1/P(E)

$P($ play $=$ yes $\mid E)+P($ play $=n o \mid E)=1$ i.e.
$0.0053 / P(E)+0.0206 / P(E)=1 \quad$ i.e.
$P(E)=0.0053+0.0206$
So,
$P($ play $=y e s \mid E)=0.0053 /(0.0053+0.0206)=20.5 \%$
$P($ play $=$ no $\mid E)=0.0206 /(0.0053+0.0206)=79.5 \%$

In other words:

$P($ play $=$ yes $\mid E)+P($ play $=$ no $\mid E)=1$
$P($ play $=y e s \mid E) / P($ play $=$ no $\mid E)=0.0053: 0.0206=0.26$
0.26 * $P($ play $=$ no $\mid E)+P($ play=no $\mid E)=1$
$P($ play $=$ no $\mid E)=1 / 1.26=79 \%$
The remaining goes to yes: $P($ play=yes $\mid E)=21 \%$

Naïve Bayes: issues

1. Zero frequency problem
2. Missing values
3. Numeric attributes

1. The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value (e.g. "Humidity = High" for class "Play=Yes")?
- Probability P(Humidity=High|play=yes) will be zero.
- P(Play="Yes"|E) will also be zero!
- No matter how likely the other values are!
- Remedy - Laplace correction:
- Add 1 to the count for every attribute value-class combination (Laplace estimator);
- Add k (\# of possible attribute values) to the denominator.

Laplace correction

| Outlook | Play | Count | $+1$ | Outlook | Play | Count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sunny | No | 0 | | Sunny | No | 1 |
| Sunny | Yes | 6 | | Sunny | Yes | 7 |
| Overcast | No | 2 | | Overcast | No | 3 |
| Overcast | Yes | 2 | | Overcast | Yes | 3 |
| Rainy | No | 3 | | Rainy | No | 4 |
| Rainy | Yes | 1 | | Rainy | Yes | 2 |

It was: out of total 9 'Yes'

$$
6 \text { - Sunny, } 2 \text { - Overcast, } 1 \text { - Rainy }
$$

The probabilities were:
$P($ Sunny | yes $)=6 / 9 ; ~ P($ Overcast \mid yes $)=2 / 9 ; ~ P($ Rainy \mid yes $)=1 / 9$
After correction:

$$
7 \text { - Sunny, } 3 \text { - Overcast, } 2 \text { - Rainy: Total 'Yes': 9+3=12 }
$$

(hence add the cardinality of the attribute to the denominator)

Laplace correction

| Outlook | Play | Count | $+1$ | Outlook | Play | Count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sunny | No | 0 | | Sunny | No | 1 |
| Sunny | Yes | 6 | | Sunny | Yes | 7 |
| Overcast | No | 2 | | Overcast | No | 3 |
| Overcast | Yes | 2 | | Overcast | Yes | 3 |
| Rainy | No | 3 | | Rainy | No | 4 |
| Rainy | Yes | 1 | | Rainy | Yes | 2 |

The probabilities were:
$P($ Sunny | yes $)=6 / 9 ; ~ P($ Overcast \mid yes $)=2 / 9 ; ~ P($ Rainy \mid yes $)=1 / 9$
After correction the probabilities:
P(Sunny | yes)= 7/(9+3);
$P($ Overcast \mid yes $)=3 /(9+3) ; \quad$ Needs to sum up to 1.0
$P($ Rainy \mid yes $)=2 /(9+3)$

Laplace correction example

```
P(yes|E)=
    P( Outlook=Sunny | yes) *
    P(Temp=Cool | yes) *
    P( Humidity=High | yes)*
    P( Windy=True | yes) *
    P( yes )/P(E)=
=(2/9) * (3/9) * (3/9) * (3/9) *(9/14) / P(E)=0.0053 / P(E)
```

With Laplace correction:

2. Missing values: in the training set

- Missing values - not a problem for Naïve Bayes
- Suppose 1 value for outlook in the training set is missing. We count only existing values. For a large dataset, the probability P (outlook=sunny|yes) and P (outlook=sunny|no) will not change much. This is because we use probabilities rather than absolute counts.

2. Missing values: in the evidence set

- The same calculation without one fraction

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| $?$ | Cool | High | True | $?$ |

$$
\begin{array}{l|l}
\mathrm{P}(\text { yes } \mid \mathrm{E})= & \mathrm{P}(\mathrm{no} \mid \mathrm{E})= \\
\mathrm{P}(\text { Temp }=\text { Cool | yes) * } & \mathrm{P}(\text { Temp=Cool | no) * } \\
\mathrm{P}(\text { Humidity }=\text { High | yes) * } & \mathrm{P}(\text { Humidity }=\text { High | no })^{*} \\
\mathrm{P}(\text { Windy }=\text { True | yes) * } & \mathrm{P}(\text { Windy }=\text { True | no })^{*} \\
\mathrm{P}(\text { yes }) / \mathrm{P}(\mathrm{E})= & \mathrm{P}(\text { play }=\text { no }) / \mathrm{P}(\mathrm{E})= \\
=(3 / 9)^{*}(3 / 9)^{*}(3 / 9) *(9 / 14) / \mathrm{P}(\mathrm{E})= & (1 / 5)^{*}(4 / 5)^{*}(3 / 5) *(5 / 14) / \mathrm{P}(\mathrm{E})= \\
0.0238 / \mathrm{P}(\mathrm{E}) & 0.0343 / \mathrm{P}(\mathrm{E})
\end{array}
$$

2. Missing values: in the evidence set

- With missing value:

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | Cool | High | True $\quad ?$ | |

- Without missing value:

$$
\begin{aligned}
& \begin{array}{|lllll|}
\hline \text { Outlook } & \text { Temp. } & \text { Humidity } & \text { Windy } & \text { Play } \\
\hline \text { Sunny } & \text { Cool } & \text { High } & \text { True } & ? \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

The numbers are much higher for the case of missing values. But we care only about the ratio of yes and no.

2. Missing values: in the evidence set

- With missing value:

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| $?$ | Cool | High | True | $?$ |

$P($ yes $\mid E)=0.0238 / P(E) \quad P(n o \mid E)=0.0343 / P(E)$
After normalization: $P($ yes $\mid E)=41 \%, \quad P(n o \mid E)=59 \%$

- Without missing value:

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | Cool | High | True | $?$ |

$P($ yes $\mid E)=0.0053 / P(E) \quad P($ no $\mid E)=0.0206 / P(E)$
After normalization: $P($ yes $\mid E)=\mathbf{2 1 \%}, \quad P(n o \mid E)=\mathbf{7 9 \%}$

Of course, this is a very small dataset where each count matters, but the prediction is still the same: most probably - no play

Normal distribution

- Usual assumption: attributes have a normal or Gaussian probability distribution.

Two classes have different distributions

- Class A is normally distributed around its mean with its standard deviation. Class B is normally distributed around the different mean and with a different std

Probability density function

- Probability density function (PDF) for the normal distribution:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

For a given x - evaluates its probability according to the distribution of probabilities in a given class

Probability and density

- Relationship between probability and density:

$$
\operatorname{Pr}\left[c-\frac{\varepsilon}{2}<x<c+\frac{\varepsilon}{2}\right] \approx \varepsilon * f(c)
$$

- But: to compare posteriori probabilities it is enough to calculate PDF, because ε cancels out
- Exact relationship:

$$
\operatorname{Pr}[a \leq x \leq b]=\int_{a}^{b} f(t) d t
$$

To compute probability $\mathrm{P}(\mathrm{X}=\mathrm{V} \mid$ class $)$

- Gives \approx probability of $\mathrm{X}=\mathrm{V}$ of belonging to class A :

$$
f(x \mid \text { class })=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- We approximate μ by the sample mean:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- We approximate σ^{2} by the sample variance:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Numeric weather data example

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | 66 | 90 | true | $?$ |

$$
f(x \mid y e s)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Compute the probability of temp=66 for class Yes:
$\sim \mu($ mean $)=$
$(83+70+68+64+69+75+75+72+81) / 9=73$
$\sim^{2} \sigma^{2}($ variance $)=\left((83-73)^{\wedge} 2+(70-73)^{\wedge} 2+\right.$ $(68-73)^{\wedge} 2+(64-73)^{\wedge} 2+(69-73)^{\wedge} 2+(75-$
$73)^{\wedge} 2+(75-73)^{\wedge} 2+(72-73)^{\wedge} 2+(81-$
$\left.73)^{\wedge} 2\right) /(9-1)=38$

| outlook | temperature | humidity | windy | play |
| :--- | ---: | ---: | :--- | :--- |
| sunny | 85 | 85 | FALSE | no |
| sunny | 80 | 90 | TRUE | no |
| overcast | 83 | 86 | FALSE | yes |
| rainy | 70 | 96 | FALSE | yes |
| rainy | 68 | 80 | FALSE | yes |
| rainy | 65 | 70 | TRUE | no |
| overcast | 64 | 65 | TRUE | yes |
| sunny | 72 | 95 | FALSE | no |
| sunny | 69 | 70 | FALSE | yes |
| rainy | 75 | 80 | FALSE | yes |
| sunny | 75 | 70 | TRUE | yes |
| overcast | 72 | 90 | TRUE | yes |
| overcast | 81 | 75 | FALSE | yes |
| rainy | 71 | 91 | TRUE | no |

Substitute $\mathrm{x}=66$:

$$
\begin{gathered}
f(x=66 \mid \text { yes })=\frac{1}{15.44} 2.7^{-\frac{(66-73)^{2}}{76}}=0.034 \\
\mathrm{P}(\text { temp }=66 \mid \text { yes })=0.034
\end{gathered}
$$

Numeric weather data example

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | 66 | 90 | true | $?$ |

$$
f(x \mid y e s)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Compute the probability of Humidity=90 for class Yes:
$\sim \mu$ (mean) $=$
$(86+96+80+65+70+80+70+90+75) / 9=79$
$\sim^{2} \sigma^{2}$ variance) $=\left((86-79)^{\wedge} 2+(96-79)^{\wedge} 2+\right.$ $(80-79)^{\wedge} 2+(65-79)^{\wedge} 2+(70-79)^{\wedge} 2+(80-$ $79)^{\wedge} 2+(70-79)^{\wedge} 2+(90-79)^{\wedge} 2+(75-$ $79)^{\wedge} 2$)/(9-1) $=104$

| outlook | temperature | humidity | windy | play |
| :--- | ---: | ---: | :--- | :--- |
| sunny | 85 | 85 | FALSE | no |
| sunny | 80 | 90 | TRUE | no |
| overcast | 83 | 86 | FALSE | yes |
| rainy | 70 | 96 | FALSE | yes |
| rainy | 68 | 80 | FALSE | yes |
| rainy | 65 | 70 | TRUE | no |
| overcast | 64 | 65 | TRUE | yes |
| sunny | 72 | 95 | FALSE | no |
| sunny | 69 | 70 | FALSE | yes |
| rainy | 75 | 80 | FALSE | yes |
| sunny | 75 | 70 | TRUE | yes |
| overcast | 72 | 90 | TRUE | yes |
| overcast | 81 | 75 | FALSE | yes |
| rainy | 71 | 91 | TRUE | no |

Substitute $\mathrm{x}=90$:

| $f(x \mid$ yes $)=\frac{1}{\sqrt{104 * 2 * 3.14}} 2.7^{-\frac{(x-79)^{2}}{2 * 104}}$ | $f(x=90 \mid$ yes $)=\frac{1}{25.55} 2.7^{-\frac{(90-79)^{2}}{208}}=0.022$ |
| :--- | :--- |
| Density function for humidity in class Yes | P (humidity $=90 \mid$ yes $)=0.022$ |

Classifying a new day

- A new day E:

| Outlook | Temp. | Humidity | Windy | Play |
| :--- | :--- | :--- | :--- | :--- |
| Sunny | 66 | 90 | true | $?$ |

```
P(play=yes | E) =
    P(Outlook=Sunny | play=yes) *
    P(Temp=66 | play=yes) *
    P(Humidity=90 | play=yes) *
    P(Windy=True | play=yes) *
    P(play=yes) / P(E) =
= (2/9) * (0.034) * (0.022) * (3/9)
    *(9/14) / P(E) = 0.000036 /
    P(E)
```

$\mathrm{P}($ play $=$ no $\mid E)=$
P(Outlook=Sunny | play=no) *
P(Temp=66 | play=no) *
P (Humidity=90 | play=no) *
$P($ Windy $=$ True | play=no) *
P(play=no) / P(E) =
$=(3 / 5)$ * (0.0291) * (0.038) * (3/5)

* $(5 / 14) / P(E)=0.000136 /$

P(E)

After normalization: $P($ play=yes $\mid E)=\mathbf{2 0 . 9 \%}, \quad P($ play=no $\mid E)=\mathbf{7 9 . 1 \%}$

Practicality

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Because classification doesn’t require accurate probability estimates as long as maximum probability is assigned to correct class

Applications of Naïve Bayes

The best classifier for:

- Document classification
- Diagnostics
- Clinical trials
- Assessing risks

Text Categorization

- Text categorization is the task of assigning a given document to one of a fixed set of categories, on the basis of the words it contains.
- The class is the document category, and the evidence variables are the presence or absence of each word in the document.

Text Categorization

- The model consists of the prior probability P(Category) and the conditional probabilities $\mathrm{P}\left(\right.$ Word $_{\mathrm{i}} \mid$ Category).
- For each category $c, P($ Category $=c)$ is estimated as the fraction of all the "training" documents that are of that category.
- Similarly, $\mathrm{P}\left(\mathrm{Word}_{\mathrm{i}}=\right.$ true | Category = c$)$ is estimated as the fraction of documents of category that contain this word.
- Also, $\mathrm{P}\left(\right.$ Word $_{\mathrm{i}}=$ true | Category $\left.=\neg \mathrm{c}\right)$ is estimated as the fraction of documents not of category that contain this word.

Text Categorization (cont’d)

- Now we can use naïve Bayes for classifying a new document with n words:
$P\left(\right.$ Category = c \mid Word $_{1}=$ true,.., Word $_{n}=$ true $)=$

$$
\alpha^{*} \mathrm{P}(\text { Category }=\mathrm{c}) \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{Word}_{\mathrm{i}}=\text { true } \mid \text { Category }=\mathrm{c}\right)
$$

$P\left(\right.$ Category $=\neg \mathrm{C} \mid$ Word $_{1}=$ true,..., Word $_{\mathrm{n}}=$ true $)=$

$$
\alpha^{*} \mathrm{P}(\text { Category }=\neg \mathrm{c}) \prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\text { Word }_{\mathrm{i}}=\text { true } \mid \text { Category }=\neg \mathrm{C}\right)
$$

Word $_{1}, \ldots$, Word $_{n}$ are the words occurring in the new document α is the normalization constant.

- Observe that similarly with the "missing values" the new document doesn't contain every word for which we computed the probabilities.

Diagnostics with Naïve Bayes

Set of effects (demonstrate themselves)

Example of diagnostic problem

- A doctor knows that 50% of patients with a stiff neck were diagnosed with meningitis.
- The doctor also knows some unconditional facts (prior probabilities):
the prior probability that any patient has meningitis is 1/50,000
the probability that he does not have a meningitis is 49,999/50,000

Diagnostic problem

```
P(StiffNeck=true | Meningitis=true) = 0.5
P(StiffNeck=true | Meningitis=false) = 0.5
P(Meningitis=true) = 1/50000
P(Meningitis=false)}=49999/5000
P(Meningitis=true | StiffNeck=true)
    = P(StiffNeck=true| Meningitis=true) P(Meningitis=true)/
                                    P(StiffNeck=true)
    = (0.5) x (1/50000) / P(StiffNeck=true) =0.5 * 0.00002 / P(StiffNeck=true) =
                                    0.00010 / P(StiffNeck=true)
```

$P($ Meningitis=false | StiffNeck=true)
= P(StiffNeck=true | Meningitis=false) P(Meningitis=false) /
P(StiffNeck=true)
$=(0.5)^{*}(49999 / 50000) /$ P(StiffNeck=true) $=0.49999$ / P(StiffNeck=true)

1/5000 chance that the patient with a stiff neck has meningitis (due to the very low prior probability)

Bayes' rule critics: prior probabilities

- The doctor has the above quantitative information in the diagnostic direction from symptoms (evidences, effects) to causes.
- The problem is that prior probabilities are hard to estimate and they may fluctuate. Imagine, there is sudden epidemic of meningitis. The prior probability, P (Meningitis=true), will go up.
- Clearly, P(StiffNeck=true|Meningitis=true) is unaffected by the epidemic. It simply reflects the way meningitis works.
- The estimation of $P($ Meningitis=true|StiffNeck=true) will be incorrect until new data about P(Meningitis=true) are collected

Tax Data - Naive Bayes

Classify: (_, No, Married, 95K, ?)

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

(Apply also the Laplace normalization)

Tax Data - Naive Bayes

Classify: (_, No, Married, 95K, ?)

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

$$
\begin{aligned}
& \mathrm{P}(\text { Yes })=3 / 10=0.3 \\
& \mathrm{P}(\text { Refund }=\text { No } \mid \text { Yes })=(3+1) /(3+2)=0.8 \\
& \mathrm{P}(\text { Status }=\text { Married } \mid \text { Yes })=(0+1) /(3+3)=0.17 \\
& f \text { (income } \mid \text { Yes })=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Approximate μ with: $(95+85+90) / 3=90$ Approximate σ^{2} with:

$$
\text { (} \left.(95-90)^{\wedge} 2+(85-90) \wedge 2+(90-90)^{\wedge} 2\right) /
$$

$$
(3-1)=25
$$

f(income=95|Yes) =
e(- ((95-90)^2 / (2*25))) /

$$
\operatorname{sqrt}(2 * 3.14 * 25)=.048
$$

$P($ Yes | $E)=\alpha^{*} .8^{*} .17^{*} .048^{*} .3=$ $\alpha^{*} .0019584$

Tax Data

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

Classify: (_, No, Married, 95K, ?)

$$
\begin{aligned}
& \mathrm{P}(\text { No })=7 / 10=.7 \\
& \mathrm{P}(\text { Refund }=\text { No } \mid \text { No })=(4+1) /(7+2)=.556 \\
& \mathrm{P}(\text { Status }=\text { Married } \mid \text { No })=(4+1) /(7+3)=.5 \\
& f(\text { income } \mid N o)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Approximate μ with:

$$
(125+100+70+120+60+220+75) / 7=110
$$

Approximate σ^{2} with:
$\left((125-110)^{\wedge} 2+(100-110)^{\wedge} 2+(70-\right.$

$$
110)^{\wedge} 2+(120-110)^{\wedge} 2+(60-110)^{\wedge} 2+
$$

$$
\left.(220-110)^{\wedge} 2+(75-110)^{\wedge} 2\right) /(7-1)=
$$ 2975

$f($ income $=95 \mid$ No $)=$
e(-((95-110)^2 / (2*2975))) /sqrt(2*3.14* 2975) $=.00704$
$P\left(\right.$ No | E) $=\alpha^{*} .556^{*} .5^{*} .00704 * 0.7=$ $\alpha^{*} .00137$

Tax Data

Classify: (_, No, Married, 95K, ?)

$$
\begin{aligned}
& P(\text { Yes } \mid E)=\alpha^{*} .0019584 \\
& P(\text { No } \mid E)=\alpha^{*} .00137
\end{aligned}
$$

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

$P($ Yes $\mid E)=300.44 * .0019584=0.59$
$P($ No|E $)=300.44 * .00137=0.41$

We predict "Yes."

