Statistics primer
 for Bayesian classifiers Lecture 4.

BOOLEAN VALUED RANDOM VARIABLES

Discrete Boolean-valued random

 variablesA is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs or not.

Examples:

- $P=p$: The US president in 2023 will be male
- $\mathrm{P}=-\mathrm{p}$: The US president will not be a male
- $\mathrm{H}=\mathrm{h}$: You wake up tomorrow with a headache
- H=-h: No headache

Probabilities

We write $P(A=a)$, or $P(A=$ true) or simple $P(A)$ as "the fraction of possible worlds where $A=a$ is true"

$P(A=a)$ is the proportion of a red oval out of the blue universe

The Axioms of Probability

We do not need to prove that:
I. $0<=P(A=a)<=1$

II. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

III. $P(A)+P(\neg A)=1$

Theorems of Probability I

$$
P(\neg A)=1-P(A)
$$

Theorems of Probability II

$$
P(A)=P(A \cap B)+P(A \cap \neg B)
$$

Conditional probability I

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

$C P$ definition: $P(A \mid B)=P(A \cap B) / P(B)$

Conditional probability II

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

$C P$ definition: $P(\neg A \mid B)=P(\neg A \cap B) / P(B)$

Probabilistic independence

Two random variables A and B are independent if
$P(A \mid B)=P(A)$, which means that:

$$
\begin{aligned}
& P(a \mid b)=P(a) \\
& P(\neg a \mid b)=P(\neg a) \\
& P(a \mid \neg b)=P(a) \\
& P(a \mid \neg b)=P(a)
\end{aligned}
$$

Knowing that B is true (or false) does not change the probability of A

Theorems III. Chain rule

From the definition of conditional probabilities:

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

we can compute $P(A \cap B)$ - that both events happened together:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

If A and B are independent:

$$
P(A \cap B)=P(A) P(B)
$$

Theorems IV. Bayes theorem

$$
P(A \cap B)=P(A \mid B) P(B)
$$

On the other hand:

$$
\begin{aligned}
& P(B \cap A)=P(B \mid A) P(A) \\
& P(A \mid B) P(B)=P(B \mid A) P(A)
\end{aligned}
$$

and we can express conditional probability of A given B through conditional probability of B given A and unconditional probabilities of A and B :

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

Independent and mutually

exclusive events

A is independent of B : knowing that B is true (or false) does not change the probability of A :

$$
P(A \mid B)=P(A)
$$

A and B are mutually exclusive - not independent variables: if A is true then B is false, if A is false then B is true with probability $P(B \mid \neg A)$

$$
P(A \cap B)=0
$$

Theorems of Probability V

A and $\neg A$ are mutually exclusive, so Axiom II becomes:
$P(A \vee \neg A)=P(A)+P(\neg A)$

Theorems of Probability VI

$P(A \cap(B \vee \neg B))=P(A \cap B)+P(A \cap \neg B)=P(A)$
(from Theorem II)

Multiple variables

The theorems for 2 Boolean-valued random variables can be extended to several random variables C, E1, E2,...,En. Let C, E1, E2, ... En be Boolean-valued random variables. For convenience, we will let E denote the n-tuple of random variables (E1,E2,...,En)

$$
\begin{aligned}
& E 1, E 2, \ldots E n=E \\
& P(C \cap E 1 \cap E 2 \cap \ldots \cap E n)=P(C, E 1, E 2, \ldots E n)=P(C, E)
\end{aligned}
$$

Chain rule:

$$
P(C, E)=P(C) P\left(E_{1} \mid C, E_{2}, \ldots E_{n}\right) P\left(E_{2} \mid C, E_{1}, E_{3}, \ldots, E_{n}\right) x \ldots x P\left(E_{n} \mid C, E_{1}, \ldots E_{n-1}\right)
$$

Multiple variables

If $E 1, \ldots$ En are mutually independent and depend only on C then:

$$
P(C, E)=P(C) P\left(E_{1} \mid C\right) P\left(E_{2} \mid C\right) x \ldots x P\left(E_{n} \mid C\right)
$$

Bayes theorem:

$$
P(C \mid E)=P(C, E) / P(E)
$$

Multi-valued random variables

Suppose A can take a value from a set of size greater than 2 - say, k value. Multi-valued random variable is defined as:

- $P(A=a i \cap A=a j)=0$ for $i \neq j$ (mutually exclusive)
- $P(A=a 1 \vee A=a 2 \vee \ldots \vee A=a k)=1$

Theorem V : $P(A=a 1 \vee A=a 2 \vee \ldots A=a m)=\sum_{(\text {from } i=1 \text { to } m)} P(A=a i), m<=k$

Theorem VI: $P(B \cap[A=a 1 \vee A=a 2 \vee A=a m])=\sum_{(\text {from } i=1 \text { to } m)} P(B \cap A i)$

