
Ranking web pages
Lecture 23

Information Retrieval (IR)

• IR core problem: Find documents relevant to user queries

• Web search has its root in IR.

From: Bing Liu. Web Data Mining. 2007

IR queries

• Boolean queries (using AND, OR, NOT)

• Bag of keywords queries

• Phrase queries

• Full document queries

• Natural language questions

Information retrieval models

• An IR model governs

1. how a document and a query are represented and

2. how the relevance of a document to a user query is defined.

• Main models:

– Boolean model

– Vector space model

– Statistical language model

– etc

Boolean model

• Each document or query is treated as a “bag” of words or

terms. Word sequence is not considered.

• Given a collection of documents D, let V = {t1, t2, ..., t|V|} be

the set of distinctive words/terms in the collection. V is called

the vocabulary.

• A weight wij > 0 is associated with each term ti of a document

dj in D.

dj = (w1j, w2j, ..., w|V|j)

• For a term that does not appear in document dj, wij = 0.

• For a term that does appear in document dj, wij = 1.

Boolean model

• Query terms are combined logically using the Boolean

operators AND, OR, and NOT.

– E.g., ((data AND mining) AND (NOT text))

• Retrieval

– Given a Boolean query, the system retrieves every document that

makes the query logically true.

– Called exact match.

Inverted Indexes

Additional Information in Buckets

Vector space model

• Documents are also treated as a “bag” of words or terms.

– Each document is represented as a vector.

– However, the term weights are no longer 0 or 1.

• Term Frequency (TF) Scheme:

– Weight of a term ti in document dj is the number of times that ti

appears in dj, denoted by fij.

• Shortcoming of the TF scheme is that it doesn’t consider the

situation where a term appears in many documents of the

collection.

– Such a term may not be discriminative.

Document Frequency

• Suppose query is: calpurnia animal

term dft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

TF-IDF term weighting scheme
• The most well known

weighting scheme

– TF: (normalized) term

frequency

– IDF: inverse document

frequency.

N: total number of docs

dfi: the number of docs that ti

appears.

• The final TF-IDF term weight is:

Each document will be a vector of such numbers.

},...,,max{ ||21 jVjj

ij

ij
fff

f
tf

i

i
df

N
idf log

jijij idftfw

IDF

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

Retrieval in the vector space model
• Query q is represented in the same way as a document.

• The term wiq of each term ti in q can also computed in the same way as in

normal document.

• Relevance of dj to q: Compare the similarity of query q and document dj.

• For this, use cosine similarity (the cosine of the angle between the two

vectors)

– The bigger the cosine the smaller the angle and the higher the similarity

V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(

Dot product Unit vectors

Cosine similarity

Text pre-processing

1. Word (term) extraction: easy

2. Stopwords removal

3. Stemming

4. Frequency counts and computing TF-IDF term weights.

Stopwords removal

• Some of the most frequently used words aren’t useful in IR and

text mining – these words are called stop words.

– the, of, and, to, ….

– Typically about 400 to 500 such words

– For an application, an additional domain specific stopwords list

may be constructed

• Why do we need to remove stopwords?

– Reduce indexing (or data) file size

• stopwords accounts 20-30% of total word counts.

– Improve efficiency and effectiveness

• stopwords are not useful for searching or text mining

• they may also confuse the retrieval system.

Stemming

• Techniques used to find out the root/stem of a word. E.g.,

user engineering

users engineered

used engineer

using

• stem: use engineer

Usefulness:

• improves the effectiveness of IR and text mining

• reduces index size

– combing words with same roots may reduce indexing size as much as

40-50%.

Precision and Recall
In information retrieval (search engines) community, system evaluation revolves

around the notion of relevant and not relevant documents.

Precision is the fraction of retrieved documents that are relevant

Recall is the fraction of relevant documents that are retrieved

How do we compute the precision and recall?

Why having two numbers?
• The advantage of having the two numbers for precision and recall is that one

is more important than the other in certain circumstances.

• Typical web surfers:

– would like every result on the first page to be relevant (high precision),

but have not the slightest interest in knowing let alone looking at every

document that is relevant.

• Professional searchers such as paralegals and intelligence analysts:

– are very concerned with trying to get as high recall as possible, and will

tolerate fairly low precision results in order to get it.

What about a single number?
• The combined measure which is standardly used is called the F measure,

which is the weighted harmonic mean of precision and recall:

where

• The default is to equally weight precision and recall, giving a balanced F

measure.

– This corresponds to making = 1/2 or =1.

– Commonly written as F1, which is short for F=1

Why not arithmetic mean?
• Suppose, that only 1 document in 10,000 is relevant to a

query.

• We can always get 100% recall by just returning all

documents, and therefore we can always get a 50%

arithmetic mean by the same process.

• In contrast, the harmonic mean score of the above

strategy is 0.02%.

• The harmonic mean is closer to the minimum of two

numbers than to their arithmetic mean.

Precision at k
• The above measures precision at all recall levels.

• What matters is rather how many good results there are on the

first page or the first three pages.

• This leads to measures of precision at fixed low levels of

retrieved results, such as 10 or 30 documents.

• This is referred to as “Precision at k”, for example “Precision at

10.”

Web Search as a huge IR system
• A Web crawler (robot) crawls the Web to collect all the pages.

• Servers establish a huge inverted indexing database and other

indexing databases

• At query (search) time, search engines conduct different

types of vector query matching.

– There is an Information Retrieval score coming out of this.

• The documents have HREF links as well. They are used to

compute a reputation score.

• The two scores are combined together in order to produce a

ranking of the returned documents.

Google Page Ranking
“The Anatomy of a Large-Scale Hypertextual Web Search

Engine”

by

Sergey Brin and Lawrence Page

http://www-db.stanford.edu/~backrub/google.html

http://www-db.stanford.edu/~backrub/google.html

Outline
1. Page rank, for discovering the most “important” pages on the

Web, as used in Google.

2. Hubs and authorities, a more detailed evaluation of the

importance of Web pages using a variant of the eigenvector

calculation used for Page rank.

Page Rank (PR)
Intuitively, we solve the recursive definition of “importance”:

A page is important if important pages link to it.

• Page rank is the estimated page importance.

• In short PageRank is a “vote”, by all the other pages on the

Web, about how important a page is.

– A link to a page counts as a vote of support.

– If there’s no link there’s no support (but it’s an abstention

from voting rather than a vote against the page).

Ranking pages by Link Analysis:

intuition

• Represent WEB pages by a directed graph

• Nodes are pages

• Edges are links

• To be clear: an arrow ending at a given page is a
link into that page, and an arrow starting there is
a link out to another webpage.

A B

C D

Ideas

• Idea 1: A webpage is important if it has many

arrows pointing to it, i.e., many incoming links.

Why this is too naïve?

Ideas

• Idea 1: A webpage is important if it has many

arrows pointing to it, i.e., many incoming links.

Why this is too naïve?

• Pages from any WEB site have links to the
Home page, which will always be rated higher
than individual pages

Ideas

• Idea 2: a webpage is important if many important
pages link to it.

It seems that:

a problem now is the self-referential nature of

this definition;

if we follow this line of reasoning, we might find

that the importance of a web page depends on

itself.

Models of the WEB

• What can we speculate about the relative

importance of pages in each of these models,

solely from the structure of the links (which is

anyways the only information at hand)?

B

C

D

B

C

D

Traffic and mindless surfing.

• Assumptions:

– The WEB site is important if it gets a lot of traffic.

– Let us further assume that everyone is surfing spending

a second on each page and then randomly following a

link to a new page.

– In this scheme it is convenient to make sure a surfer

cannot get stuck, so we make the following STANDING

ASSUMPTION:

Each page has at least one outgoing link.

Traffic and mindless surfing.

Example 1

B

A

C

• We start with 10 surfers in each page

• At the first random click, 5 of the surfers at page A, say,
go to page B, and the other 5 go to page C. So while
each site sees all 10 of its visitors leave, it gets 5 + 5
incoming visitors to replace them: So the amount of
traffic at each page remains constant at 10.

10

10

10

10

10

10

5

5

5

5

5 5

Traffic and mindless surfing.

Example 2

B

A

C

• We start with 10 surfers in each page

• After the first random click, 10 of the surfers at page A go

to page B, since there is only 1 outgoing link from A

etc…

10

10

10

15

10

5

5

5

10

10

Traffic and mindless surfing.

Example 2

• After the two next clicks it becomes

• Where is this leading? Do we ever reach a stable

configuration, as in the first model?

15

10

5

7.5

7.5

5

10

10

12.5

7.5

5

5

7.5

12.5

12.5

12.5

5

Traffic and mindless surfing.

Example 2

• While the answer is no, it turns out that the process
converges to the following distribution, which (you can
check) remains the same going forward in time

12

12

6

Traffic and mindless surfing.

Example 2

• This stable distribution is what the PageRank
algorithm (in its most basic form) uses to assign
a rank to each page: The two pages with 12
visitors are equally important, and each more
important than the remaining page having 6
visitors.

12

12

6

Traffic and mindless surfing.

Question?

• How do we qualitatively explain why two of the pages in
this model should be ranked equally, even though one
has more incoming links than the other?

12

12

6

B

A

C

How to compute the stable

distribution?

B

A

C

1/2

1/2

1

1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Create matrix of the importance

distribution from the current state

General formula for computing page

rank in each iteration i

Ri+1(A)

=0.80*

0 1/2 1

*

Ri(A)

+0.20*

Ri(A)

Ri+1(B) 1 0 0 Ri(B) Ri(B)

Ri+1(C) 0 1/2 0 Ri(C) Ri(C)

Rank of the page in

the previous

iteration

Importance

distribution from the

previous iteration

Dumping factor (to

avoid dead ends and

traps)

Computing page rank for iteration 1

R2(A)

=0.80*

0 1/2 1

*

1

+0.20*

1

R2(B) 1 0 0 1 1

R2(C) 0 1/2 0 1 1

1

1

1

1.5

1

0.5

1/2

1/2

1

1

1.4

1

0.6

Computing page rank for iteration 2

R3(A)

=0.80*

0 0.7 0.6

*

1

+0.20*

1

R3(B) 1 0 0 1.4 1.4

R3(C) 0 0.7 0 0.6 0.6

1.4

1

0.6

1

1.34

0.98

0.7

0.7

0.6

1

1.08

1.27

0.9

PageRank exercise 1.

• Guess what pages in the given model got the highest

rank

A B

D C

PageRank exercise 2.

• Guess what pages in the given model got the highest

rank

A B

D C

PageRank exercise 3.

• Guess what pages in the given model got the highest

rank

A B

D C

PageRank exercise 4.

• Guess what pages in the given model got the highest

rank

• Check you guess by running the code

A B

D C

>>> execfile('PageRank.py')

[0.25 0.25 0.25 0.25]

Page Rank: General Formula
PR(A) = PR(T1)/C(T1) +…+ PR(Tn)/C(Tn)

1. PR(Tn) - Each page has a notion of its own self-importance,

which is say 1 initially.

2. C(Tn) – Count of outgoing links from page Tn.

1. Each page spreads its vote out evenly amongst all of it’s outgoing

links.

3. PR(Tn)/C(Tn) –

a) Each page spreads its vote out evenly amongst all of it’s outgoing

links.

b) So if our page (say page A) has a back link from page “n” the

share of the vote page A will get from page “n” is

“PR(Tn)/C(Tn).”

How is Page Rank Calculated?

• The page rank (PR) of each page depends on the PR of the pages
pointing to it.

– We won’t know what PR those pages have until the pages pointing to
them have their PR calculated and so on…

• Well, just go ahead and calculate a page’s PR without knowing
the final value of the PR of the other pages.

– Each time we run the calculation we’re getting a closer estimate of the
final value.

– Repeat the calculations lots of times until the numbers converge.

Web Matrix
Capture the formula by the web matrix (M) that is:

• If page j has n successors (links), then:

– M[i, j] =1/n if page i is one of these n successors of page j, and

– 0 otherwise.

Then, the importance vector containing the rank of each page is

calculated by:

Ranknew = M • Rankold

Example
• In 1839, the Web consisted on only three pages: Netscape,

Microsoft, and Amazon.

old

old

old

new

new

new

a

m

n

a

m

n

0121

2100

21021

For example, the first column of the Web matrix

reflects the fact that Netscape divides its importance

between itself and Amazon.

The second column indicates that Microsoft gives all

its importance to Amazon.

Start with n = m = a = 1, then do rounds of

improvements. Based on Jeff Ullman’s notes

Example
• The first four iterations give the following estimates:

n = 1

m = 1

a = 1

1

1/2

3/2

5/4

3/4

1

9/8

1/2

11/8

5/4

11/16

17/16

• In the limit, the solution is n = a = 6/5; m = 3/5.

• That is, Netscape and Amazon each have the same importance,

and twice the importance of Microsoft (well this was 1839).

Problems With Real Web Graphs
Dead ends: a page that has no successors has

nowhere to send its importance.

Eventually, all importance will “leak out of”

the Web.

Example: Suppose Microsoft tries to claim

that it is a monopoly by removing all

links from its site.

The new Web, and the rank vectors for

the first 4 iterations are shown.

n = 1 1 3/4 5/8 1/2

m = 1 1/2 1/4 1/4 3/16

a = 1 1/2 1/2 3/8 5/16

Eventually, each of n, m, and a become 0; i.e.,

all the importance leaked out.

old

old

old

new

new

new

a

m

n

a

m

n

0021

2100

21021

Based on Jeff Ullman’s notes

Problems With Real Web Graphs
Spider traps: a group of one or more

pages that have no links out of the

group will eventually accumulate all the

importance of the Web.

Example: Angered by the decision,

Microsoft decides it will link only to

itself from now on. Now, Microsoft has

become a spider trap.

The new Web, and the rank vectors for

the first 4 iterations are shown.

n = 1 1 3/4 5/8 1/2

m = 1 3/2 7/4 2 35/16

a = 1 1/2 1/2 3/8 5/16

Now, m converges to 3, and n = a = 0.

old

old

old

new

new

new

a

m

n

a

m

n

0021

2110

21021

Google Solution to

Dead Ends and Spider Traps
Stop the other pages having too much influence.

This total vote is “damped down” by multiplying it by a factor.

Example: If we use a 20% damp-down, the equation of previous
example becomes:

old

old

old

old

old

old

new

new

new

a

m

n

a

m

n

a

m

n

20.0

0021

2110

21021

80.0

The solution to this equation is n = 7/11; m = 21/11; a = 5/11.

