
Artificial Neural Networks

Lecture 23



How computer works

Some useful 

computations

Inputs
Outputs



How brain works: neurons
Neuron is an electrically excitable cell that processes 

and transmits information by electrical and chemical 

signaling

Input

Output



Neurons: signal summation

• Dendrite(s) receive an electric charge

• The strengths of all the received charges are added 

together (spatial and temporal summation). The 

aggregate value is then passed to the soma (cell 

body) to axon hillock.



Neurons: activation threshold
• If the aggregate input is greater than the axon 

hillock's threshold value, then the neuron fires, 

and an output signal is transmitted down the axon. 



Neurons: the output signal is 

constant
• The strength of the output is constant, regardless 

of whether the input was just above the threshold, 

or a hundred times as great. This uniformity is 

critical in an analogue device such as a brain 

where small errors can snowball, and where error 

correction is more difficult than in a digital 

system.



How neurons communicate

• The signal is transmitted to 

other neurons through synapses.

• The physical and neurochemical 

characteristics of each synapse 

determines the strength and 

polarity of the new input signal. 

This is where the brain is the 

most flexible



Modeling the brain

• The complicated biological phenomena may be modeled 

by a very simple model: nodes model neurons and edges

model connections. 

• The input nodes each have a weight that they contribute 

to the neuron, if the input is active. This corresponds to 

the strength of synaptic connection.

A

B

C

D



Modeling the brain: 

input neurons
• The input nodes (A, B, C) each have a weight that they 

contribute to the neuron (D), if the input is active. The 

neuron can have any number of inputs; neurons in the 

brain can have as many as a thousand inputs. 
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Basic unit of the model: 

artificial neuron
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Input links Output links
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Neuron: combination function
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IN=Σ(j)ajwj,i

g
ai

ai=g(INi)

Combination function: 

mostly weighted sum



Neuron: activation function
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Activation 

function 

Activation function should be threshold function



The simplest threshold 

function: sign
a1
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Σ

IN=Σ(j)ajwj,i

g
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Example of threshold function:

y(x)=0 if x<0

y(x)=1 if (x≥0) (neuron fires)



Model of neuron networks

• Nodes and edges. Each edge not only permits to transfer the value, 

but has an additional parameter: weight

• Node takes input and triggers other nodes through connections

• Node D needs to think if it wants to transfer the value

• The decision is made from the output of transfer function (0 or 1)
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Make computers as capable 

as humans?

• Brain is highly complex, non-linear, massively-

parallel system

• Response of integrated response circuit:

1 nanosec = 10-9 sec

• Response of neuron 

1 millisec 10-3 sec

• The only advantage of the brain: massively parallel 

– 10 billion neurons with 60 trillions of connections



Artificial neural network is abstract 

– media-independent

• To simulate the brain we could construct thousands of op-

amp circuits in parallel

• We can also simulate them using a program that is 

executed on a conventional serial processor. 

• The solutions are theoretically equivalent since a neuron's 

medium does not affect its operation. By simulating the 

neural behaviour, we created a virtual machine that is 

functionally identical to a machine that would have been 

prohibitively complex and expensive to build. 



ANN implementation in serial 

processors is not as powerful as 

human brain 
• We can simulate parallel circuits using a program 

executing on a conventional serial processor. 

• A computer's flexibility makes the creation of one 

hundred neurons as easy as the creation of one neuron. 

The drawback is that the simulated machine is slower by 

many orders of magnitude than a real neural network 

since the simulation is being done in a serial manner by 

the CPU.



Example of a simple ANN

w1=1

w2=-1

Input nodes

Output node

IN

Σ

g
a

ai=g(IN)x1

x2

g(IN)=IN-0.5

a=1 if g≥0.5 – neuron gets activated only if the value of g is ≥ 0.5

a=0 if g<0.5



Example of a simple ANN

w1=1

w2=-1

Input nodes

Output node

IN

Σ

g
a

ai=g(IN)x1

x2

g(IN)=IN-0.5

a=1 if g≥0.5

a=0 if g<0.5

If x1=1 and x2=1 then 

Σ=0 

g=-0.5 – no activation

If x1=0 and x2=1 then

Σ=-1 

g=-1.5 – no activation

If x1=1 and x2=0 then

Σ=1 

g=0.5 – activation



Example of a simple ANN

w1=1

w2=-1

Input nodes

Output node

IN

Σ

g
a

ai=g(IN)x1

x2

g(IN)=IN-0.5

a=1 if g≥0.5 

a=0 if g<0.5

This single neuron and its 

input weighting performs 

the logical expression 

x1 AND NOT x2.



Example of a simple ANN: 

bias factor
w1=1

w2=-1

Input nodes

IN

Σ

g
a

ai=g(IN)+t

x1

x2

a=1 if g≥0 – neuron gets activated only if g ≥ 0

a=0 if g<0

It is more convenient for 

computation to use sign

function (> 0 and not > 0.5)

-0.5 is then added as a 

constant bias factor

t =-0.5



Single-layer NN - Perceptron

0.3

0.3

0.3

Input nodes Output node

IN

Σ

g=sign

a

ai=g(INi)
x1

x2

x3

t=0.4

y

x1 x2 x3 y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

g=sign(Σ+0.4)

y=sign(w1x1+w2x2+w3x3+t)



Training Perceptron: 

learning weights

Start with random weights

Training record has attribute values aj, ak and class T

Perceptron classifies it as class O

Err=T - O

T – desired output (target)

wj,i

wk,i

IN

Σ

IN=Σ(j)ajwj,i

g
ai

ai=g(INi)IN aj

IN ak



Training Perceptron: 

learning weights

Classification error:

Err=T - O

wj,i

wk,i

IN

Σ

IN=Σ(j)ajwj,i

g
ai

ai=g(INi)IN aj

IN ak

T – desired output (target)

O – actual output



Training Perceptron: 

learning weights

Classification error:

Err=T - O

wj,i

wk,i

IN

Σ

IN=Σ(j)ajwj,i

g
ai

ai=g(INi)IN aj

IN ak

T – desired output (target)

O – actual output

Adjust  each weight by Δ:

Δ (wj,i) = aj
x Err



Training Perceptron: 

learning weights

Err=T - O

wj,i

wk,i

IN

Σ

IN=Σ(j)ajwj,i

g
ai

ai=g(INi)IN aj

IN ak

T – desired

O – actual

Adjust  each weight by Δ:

Δ (wj,i) = aj
x Err

Each weight is adjusted by multiplying its contribution 

(value) by the error. 



Training Perceptron: 

learning weights

Err=T - O

wj,i

wk,i

IN

Σ

IN=Σ(j)ajwj,i

g
ai

ai=g(INi)IN aj

IN ak

T – desired

O – actual

Adjust  each weight by Δ:

Δ (wj,i) = aj
x Err

if T-O<0 (actual > target) then decrease weight 

if T-O>0 (actual<target) then increase weight  



Training Perceptron: 

adjusting weights
Err=T - O

T – desired output (target)

O – actual output

The delta rule:

wj,i ← wj,i + η x ai
x Err

Learning rate 

(eta)

But do not adjust by the entire 

value of error, just move slightly 

into desired direction



Training Perceptron: 

adjusting weights

The delta rule:

wj ← wj + η x xi
x Err

Learning rate

1

2

3

1

2

O1=1

T1=-1

0

1

1

Slightly reduce weights on inputs with 1

Slightly Increase weight on input with 0

The learning is performed with 

a slow rate



The goal of training

w1

w2

Input nodes

Output node

IN

Σ

g=sign

a

ai=g(Ini)
x1

x2

The output node gets 

activated only if 

Σxiwi+t>0

In 2D this can be 

expressed as points 

above and below the 

line: w1x1+w2x2+t

In N dimensions – it is a 

hyperplane, which 

separates all positive 

examples from negative 

examples 

Objective of Perceptron learning:  

determine the optimal values of 

weights to separate all labeled 

instances by a hyperplane



Perceptron learned AND NOT

1

x1

x2

y
-1

t=-0.5

y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0

1 1 <0

y=x1w1+x2w2+t

Let t=-0.5, w1=1, w2=-1

y(0,0)=-0.5

y(0.1)=-1.5

y(1.0)=0.5

y(1.1)=-0.5



This means perceptron found a 

separating line

1

x1

x2

y
-1

t=-0.5

y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0

1 1 <0

x1

y=x1w1+x2w2+t

t=-0.5, w1=1, w2=-1

x1-x2-0.5=0

x2=x1-0.5

x2

-
+



Perceptron can learn only 

linearly-separable functions
x2

x1

I1

I2

AND

x2

x1

I1

I2
OR



Non linearly-separable: 

exclusive OR (XOR)
x2

x1

I1

I2

XOR

Solution – add more layers

x1 x2 z

0 0 0

0 1 1

1 0 1

1 1 0

XOR table



Building multi-layer perceptron 

for XOR
x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0



Combining outputs of two perceptrons

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0

2 small perceptrons will be 

connected to the third, which will 

combine their values



XOR ANN topology
x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

z

x1

x2

y1

y2



XOR ANN weights
x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

z

x1

x2

y1

y2

-3/2
1

1

1

1

-1

1
-1/2

-1/2



XOR ANN: y1

z

x1

x2

y1

y2

-3/2
1

1

1

1

-1

1
-1/2

-1/2

x1 x2 y1 y2 z

0 0 -3/20

0 1 -3/20

1 0 -1/20

1 1 1/21

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  



XOR ANN: y2

z

x1

x2

y1

y2

-3/2
1

1

1

1

-1

1
-1/2

-1/2

x1 x2 y1 y2 z

0 0 -3/20 -1/20

0 1 -3/20 1/21

1 0 -1/20 1/21

1 1 1/21 3/21

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  



XOR ANN: z

z

x1

x2

y1

y2

-3/2
1

1

1

1

-1

1
-1/2

-1/2

x1 x2 y1 y2 z

0 0 -3/20 -1/20 0

0 1 -3/20 1/21 1/21

1 0 -1/20 1/21 1/21

1 1 1/21 3/21 -1/20

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  



Separating with 2 linear separators

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 and x2)  

z

x1

x2

y1

y2

-3/2
1

1

1

1

-1

1
-1/2

-1/2

y1=x1+x2-3/2

y2=x1+x2-1/2



Separating with 2 linear separators

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 and x2)  

y1=x1+x2-3/2

y2=x1+x2-1/2

x2=-x1+3/2

x2=-x1+1/2

Separating lines (2D hyperplanes):



Summary: Multi-layer ANNs
• As in a regular computer: inputs and outputs, only 

now we call them neurons. Added: hidden nodes

• Nodes are organized into layers. Edges are 

directed and carry weight

• No connections inside the layer

Input 

layer

Hidden 

layer 1

Hidden 

layer 2

Output 

layer



Properties of architecture

• No connections within a layer 

y f w x b
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Each unit is a perceptron



Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

•

y f w x b
i ij j i

j

m

 


( )
1

Each unit is a perceptron



Properties of architecture

• No connections within a layer

• No direct connections between input and output layers

• Fully connected between layers

y f w x b
i ij j i

j

m

 


( )
1

Each unit is a perceptron



ANN model vs. regular 

computing model

Hidden 

layer 1

Hidden 

layer 2

Some useful 

computations

Inputs Outputs



1st layer draws 

linear boundaries 2nd layer combines 

the boundaries
3rd layer can generate 

arbitrarily complex boundaries

What do we gain from the extra layers

Can also view 2nd layer as using local knowledge while 3rd layer does global



Activation function does not 

need to be linear or sign

• Recall: brain is highly complex, non-linear, 

massively-parallel system

• We can use more complex non-linear function: 

sigmoidal functions



Sigmoidal (logistic) function-common in  ANN

Note: when net  = 0,  f = 0.5

)(
1

1

))(exp(1

1
))((

tak

i

i
ietak

tag








The sigmoidal function 

gives a value in range of 0 

to 1. 

Alternatively can use 

tanh(ka) which has the  

same shape but in range 

-1 to 1.

Non-linear activation functions

where k is a 

positive constant
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Weight adjustment for non-

linear activation functions
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Derivative of 

activation 

function



Universal Function Approximation

How good is a Multi-Layer model?  

Universal Approximation Theorem

For any given constant e  and continuous function 

h (x1,...,xm),  there  exists a three layer ANN with the 

property that 

| h (x1,...,xm) - H(x1,...,xm) |< e 

where H ( x1 , ... , xm )= S k 
i=1  ai f ( S m

j=1 wijxj + bi )



With sigmoidal activation functions we can show that a 

3 layer net can approximate any function to arbitrary 

accuracy: property of Universal Approximation

Proof by thinking of superposition of sigmoids

Not practically useful as need arbitrarily large number of 

units but more of an existence proof

For a 2 layer net: same is true for a 2 layer net providing 

function is continuous and from one finite dimensional 

space to another 

Very powerful model



How do we learn: brain

• Hebbian theory: “Cells that 

fire together wire together”

• Persistent changes in 

molecular structures alter 

synaptic transmission 

between neurons

• This corresponds to 

changing weights in ANN



How does ANN learn

• The network can learn its own weights

• It is presented with a set of inputs and 

predefined outputs

• The actual output is different from the 

predefined output by some error

• Adjust the connection weights to produce a 

smaller error



Learning weights in 3-layer 

networks
• When we input attribute values of a training 

record, the activation values are propagated 

through hidden layer neurons to output neurons. 

• The actual network outputs are compared with the 

desired output, we end up with the error in each of 

the output units. We want to bring this error to 

zero.



Learning weights in 3-layer 

networks: from hidden to input

• The simplest method is a greedy method: from the 

delta rule, we know how to adjust weights 

between the output and the hidden layer. But if we 

only apply this rule, the weights from input to 

hidden units never change.

• We do not have the value of error for hidden units



Learning weights in 3-layer 

networks: distributing credit 

(blame)

• The solution is to distribute error from an output 

node to all the hidden units connected to it, 

weighted by this connection. 

• i.e. a hidden unit receives a delta from each output 

unit weighted with (=multiplied by) the weight of 

the connection between these units.



Backpropagation learning algorithm ‘BP’

Solution to credit assignment problem in ML NN 

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’, 

feedforward propagation of input pattern signals through 

network



Backpropagation learning algorithm ‘BP’

Solution to credit assignment problem in ML NN 

Rumelhart, Hinton and Williams (1986)

BP has two phases:

Forward pass phase: computes ‘functional signal’, 

feedforward propagation of input pattern signals through 

network

Backward pass phase:  computes ‘error signal’, 

propagates the error backwards through network 

starting at output units (where the error is the difference 

between actual and desired output values) 



Backpropagation: intuition

• The output nodes tell to hidden nodes that there was an 

error

• The hidden nodes need to decide how to adjust their 

weights to decrease an error



Backpropagation: intuition

• The node calculates its own error (by taking partial 

derivative of error function by its weight) and pushes it 

back to the input layer nodes, which need to adjust 

their weights

• The idea is to find out which of the connections is the 

most to blame for the error and to adjust its outgoing 

weight more



Backward Pass

Weights here can be viewed as providing 

degree of ‘credit’ or ‘blame’ to hidden units

j
k

di

wki wji

di = g`(ai) Sj wji j



BP Algorithm (sequential)

1. Apply an input vector (training record) and calculate all activation 

functions, the output and the error

2. Evaluate k for all output units via:

(Note similarity to perceptron learning algorithm)

3. Backpropagate ks to get error terms d for hidden layers using:

4. Change weights using:
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Since degree of weight change is proportional to derivative of 

activation function, 

weight changes will be greatest when units 

receives mid-range functional signal and 0 (or very small) on 

extremes. This means that by saturating a neuron (making the 

activation large) the weight can be forced to be static: does not 

change anymore - learned.
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Summary of (sequential) BP learning algorithm

Set learning rate 

Set initial weight values (incl. biases):  w, v

Loop until stopping criteria satisfied:

present input pattern to input units

compute functional signal for hidden units

compute functional signal for output units

present Target response to output units

compute error signal for output units

compute error signal for hidden units

update all weights at the same time

increment n  to n+1 and select next input and target

end loop



Application: 

Handwriting recognition

Dataset: collection of 

handwritings

Attributes: binary values (on-off) 

of each dot in 2D point matrix

Class: actual letter meant by the 

writer



Application: 

Handwriting recognition

Sample training record for class 

capital A



Application: 

Handwriting recognition

Another training record for class 

capital letter A



NN for handwriting recognition

• Each dot feeds its value (0 or 1) to a 

corresponding input neuron

• Each input neuron is connected to the hidden layer

• Each hidden layer neuron is connected to 23 

(suppose only for capital English letters) output 

neurons

A B C D E … Output layer



NN for handwriting recognition

• Multi-class problems are solved by competitive learning

• Initially all weights are random, and each output neuron 

gets some value

• The class is assigned by the letter with maximum value

• The weights are adjusted in such a way that to increase 

the correct classification, and to decrease the incorrect 

ones

A B C D E … Output layer



NN for handwriting recognition

• Each dot is a dimension, and each training record 

is a vector in 23-D hyperplane

A

B

Expected to be A, but 

falls closer to B

Slightly move vector 

towards A away from B



Applications of ANNs

• Credit card frauds

• Kinect – gesture recognition

• Facial recognition: 
http://celebrity.myheritage.com/FP/Company/try-face-recognition.php 

• Self-driving cars

• …



Deficiencies of ANNs

• Provide no more insight why the decision 

was made than dissecting human brain 

helps to understand how it makes decisions

• Updating with new info – stale – no rules, 

degrades gracefully. As in humans –

inference from previous knowledge slows 

the process of learning new patterns


