Clustering algorithms: agglomerative clustering

Lecture 20

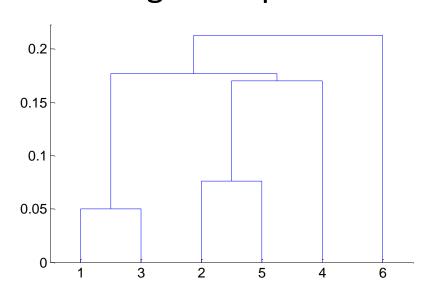
Clustering algorithms

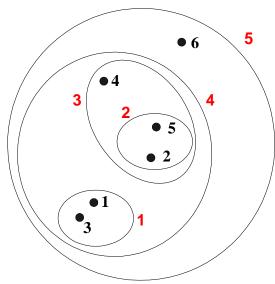
- K-means clustering
- Agglomerative hierarchical clustering
 - Density-based clustering

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram

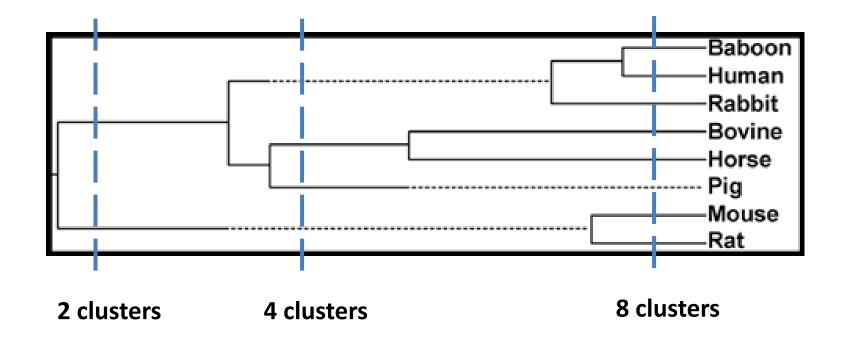
 A tree like diagram that records the sequences of merges or splits





Strengths of hierarchical clustering

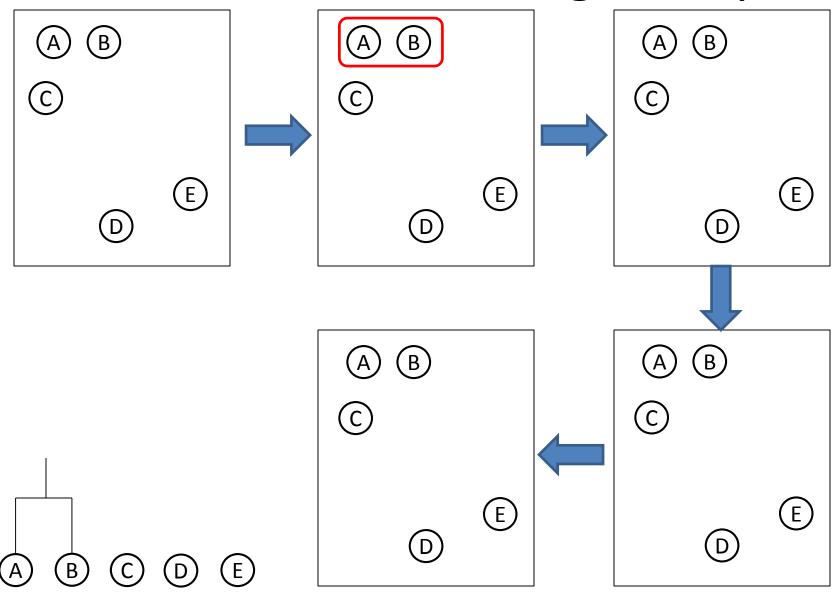
- Do not have to assume any particular number of clusters
 - 'cut' the dendogram at the proper level

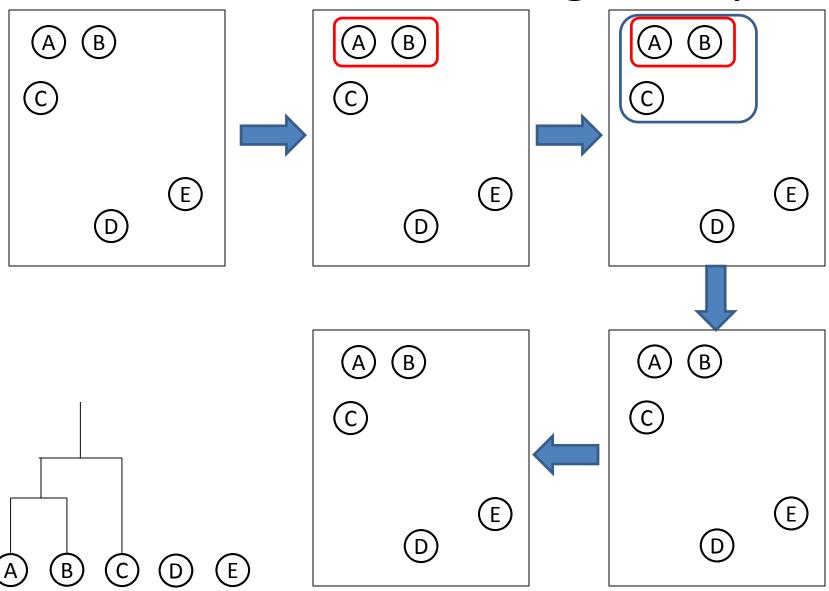


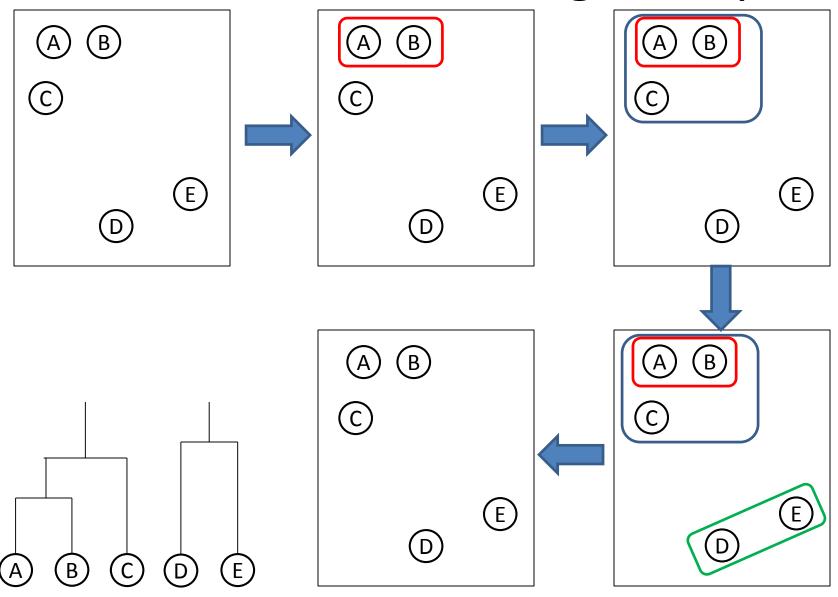
Types of hierarchical clustering

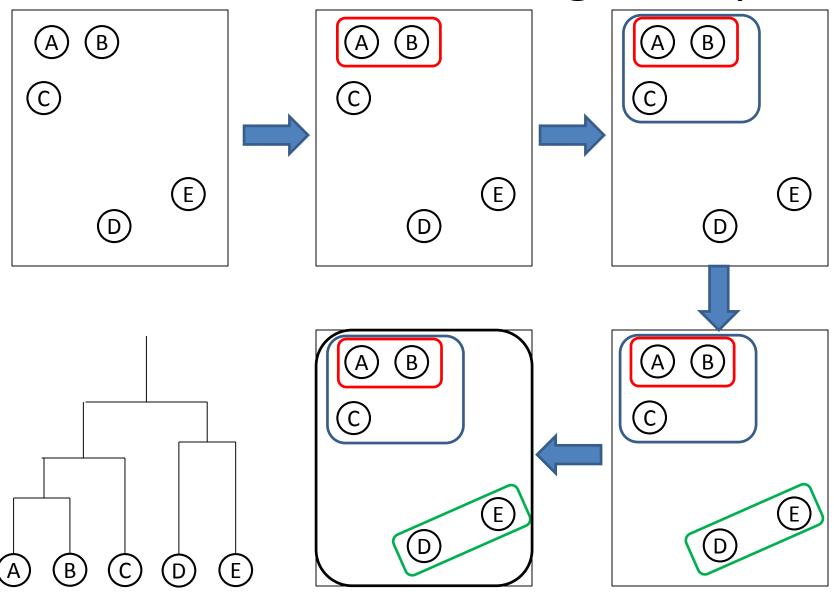
 Agglomerative – starts with each point as a cluster, and performs successive merges

 Divisive – starts with all points as a cluster and performs successive splits









Hierarchical Clustering Algorithm

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster left.

Hierarchical Clustering Algorithm

Let each data point be a cluster Compute the proximity matrix

Repeat

Merge the two closest clusters Update the proximity matrix

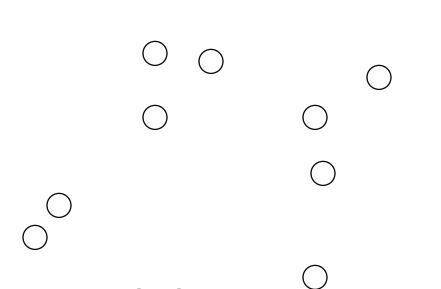
Until only a single cluster remains

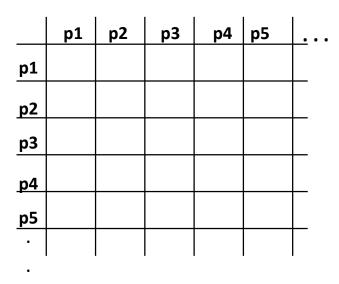
 Key operation is the computation of the proximity of two clusters.

Starting Situation

Start with clusters of individual points and a proximity

matrix

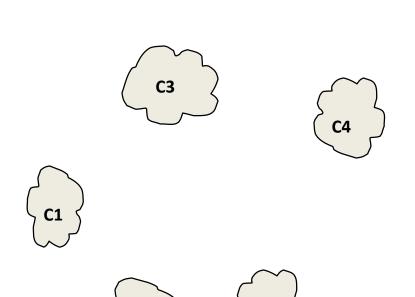




Proximity Matrix

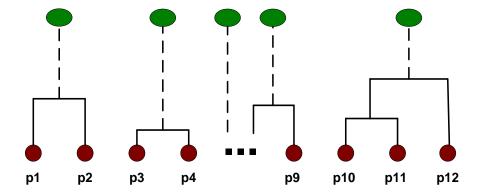
Intermediate Situation

After some merging steps, we have some clusters



	C1	C2	С3	C4	C 5
C1					
C2					
С3					
<u>C4</u>					
C 5					

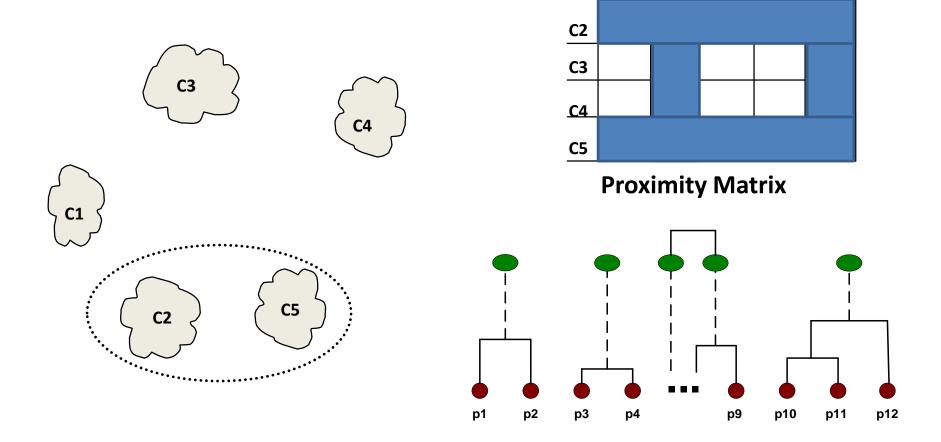
Proximity Matrix



Intermediate Situation

We want to merge the two closest clusters (C2 and C5)
 and update the proximity matrix.

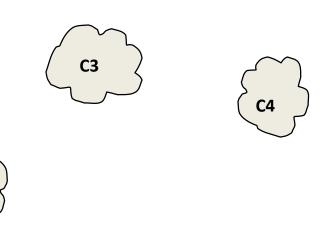
C1



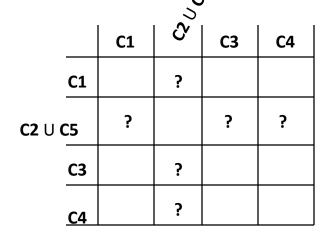
After Merging

The question is "How do we update the proximity

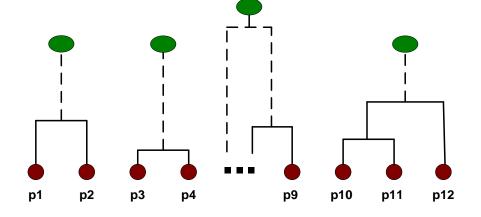
matrix?"



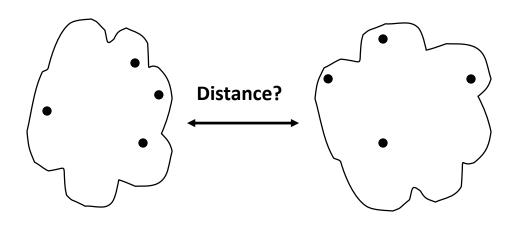
C2 ∪ **C5**



Proximity Matrix



How to Define Inter-Cluster Distance

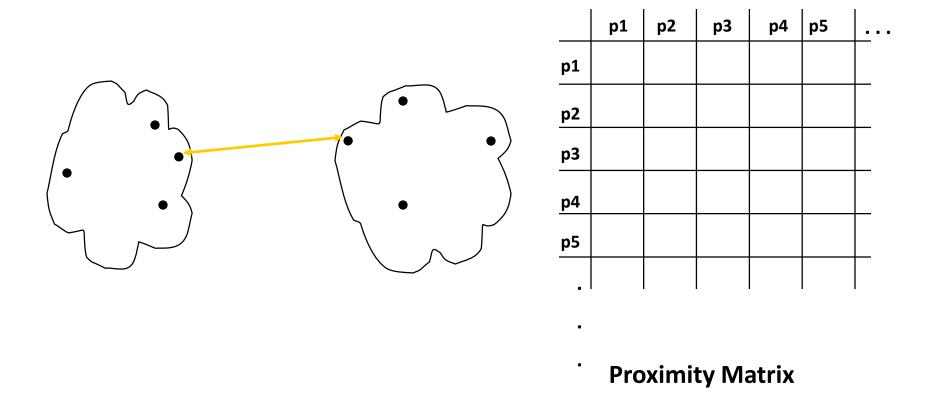


	p1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
р3						
р4						
p5						
•						

- MIN
- MAX
- Centroids Distance
- Group Average

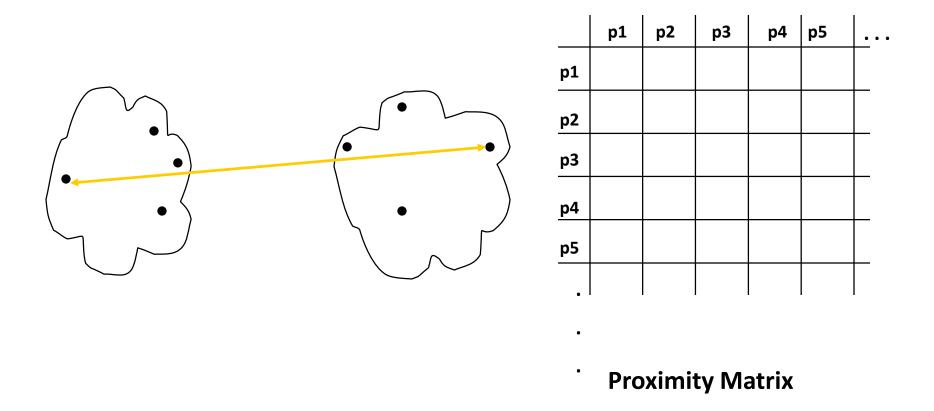
Proximity Matrix

Inter-Cluster Distance: MIN



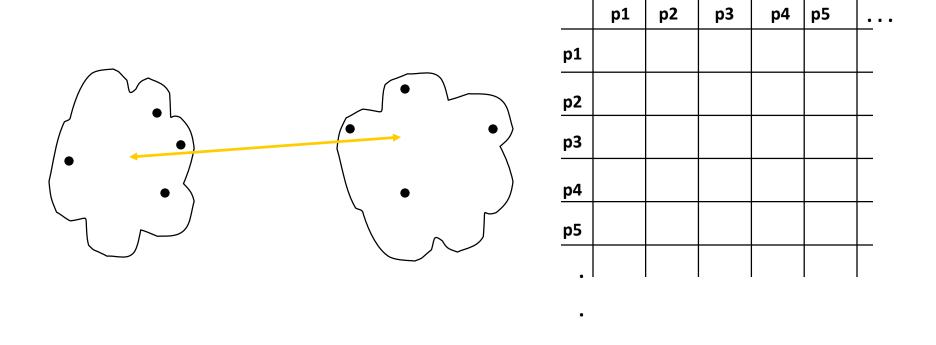
Problem: sensitive to outliers

Inter-Cluster Distance: MAX



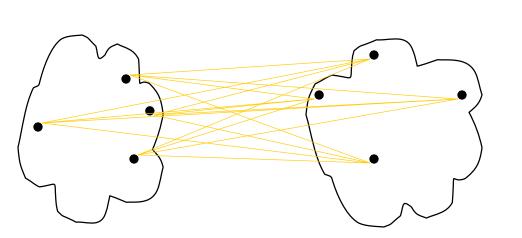
Problem: tends to break large clusters

Inter-Cluster Distance: Centroid distance



Proximity Matrix

Inter-Cluster Distance: Group Average

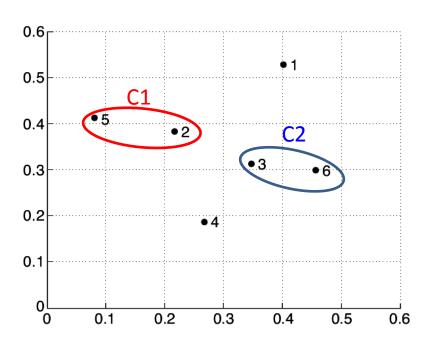


	p1	p2	рЗ	р4	р5	<u> </u>
р1						
p2						
р3						
р4						
р5						

Proximity Matrix

Cluster Distance: MIN (single link)

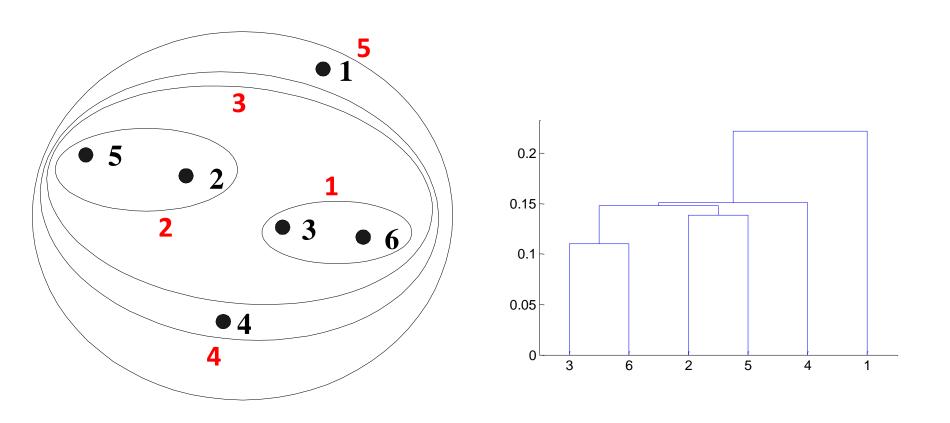
- Distance between two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points



	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.15

Hierarchical Clustering: MIN

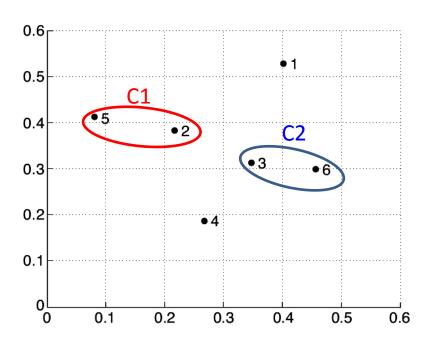


Nested Clusters

Dendrogram

Cluster Distance: MAX

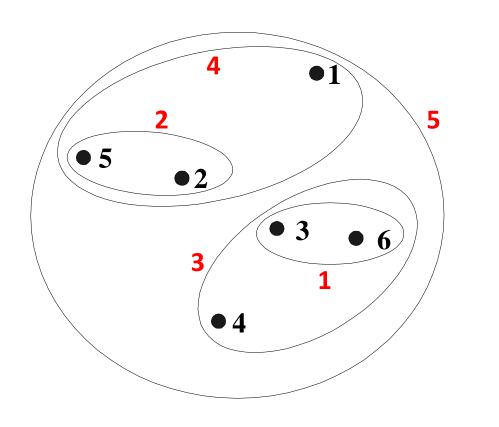
- Distance between two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by one pair of points

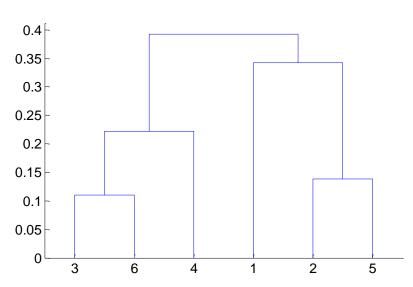


	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

d(C1,C2)=0.39

Hierarchical Clustering: MAX





Nested Clusters

Dendrogram

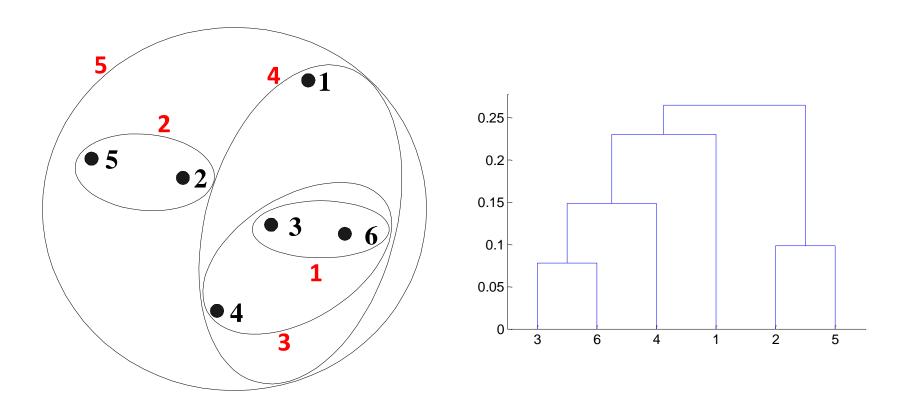
Hierarchical clustering: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(Cluster_{i}, Cluster_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

uses all pairs of points from two clusters

Cluster distance: Group Average



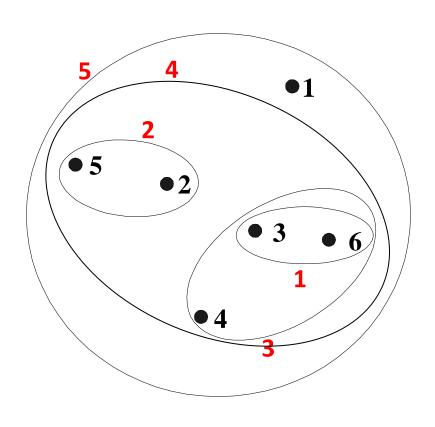
Nested Clusters

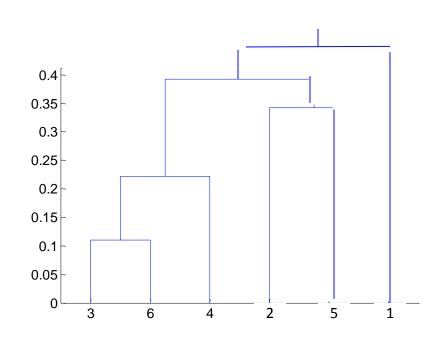
Dendrogram

Cluster Distance: Centroid distance

- Distance between two clusters is based on the distance between their centroids
 - Determined by all points in each cluster

Cluster distance: Centroid distance





Nested Clusters

Dendrogram

Hierarchical Clustering: Time and Space

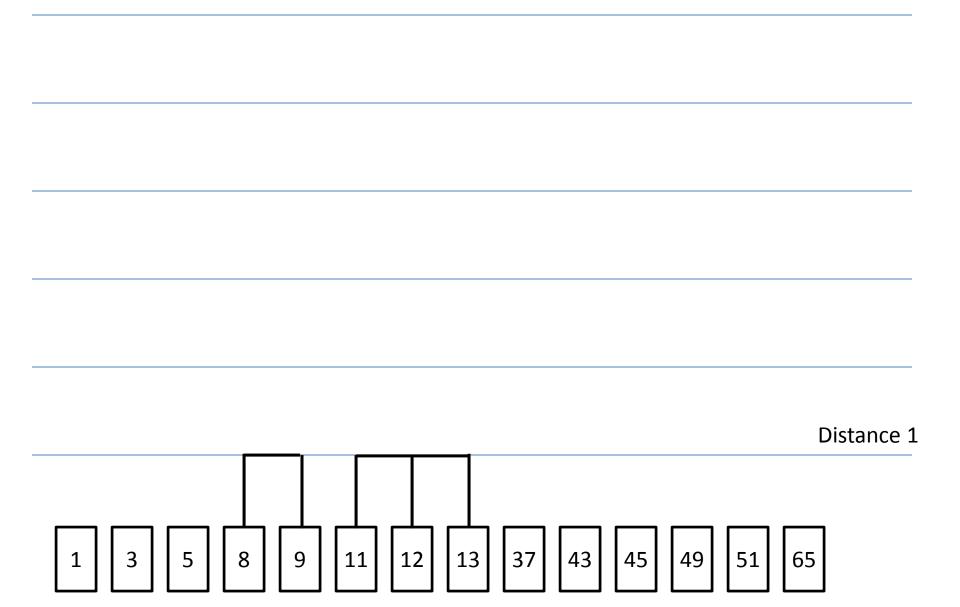
- O(N²) space since it uses the proximity matrix.
 - N is the number of points.

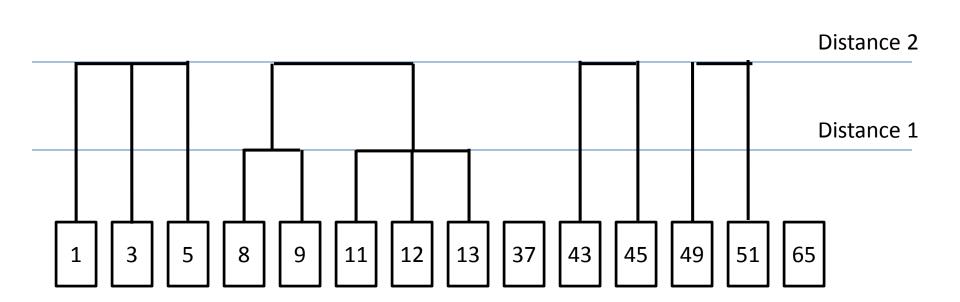
- O(N³) time in many cases
 - There are N steps and at each step the size, N²,
 proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time using more advanced data structures

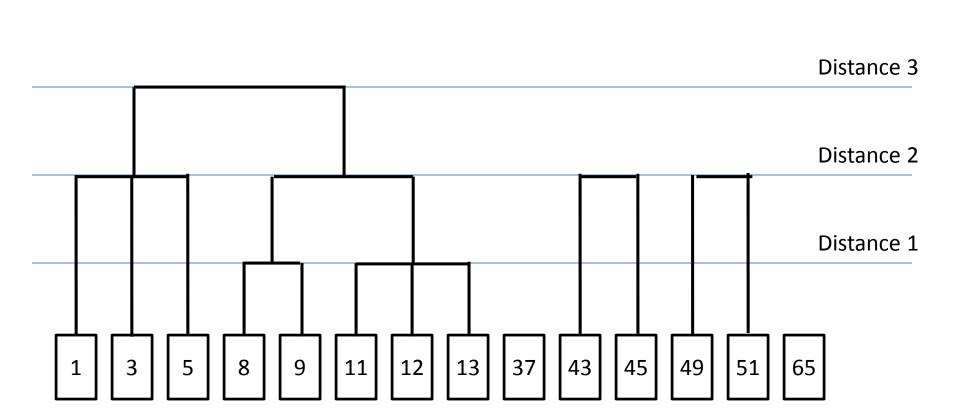
Hierarchical clustering is expensive!

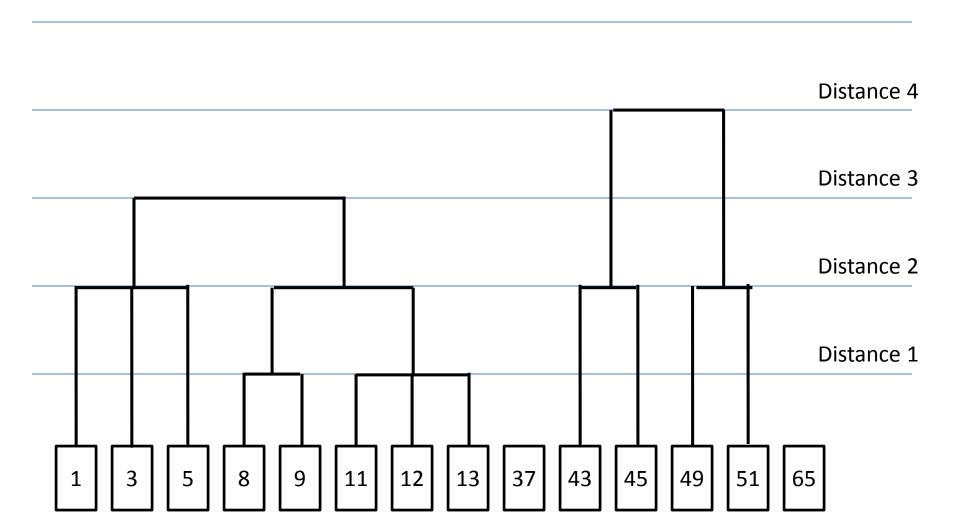
Example: clustering people by age

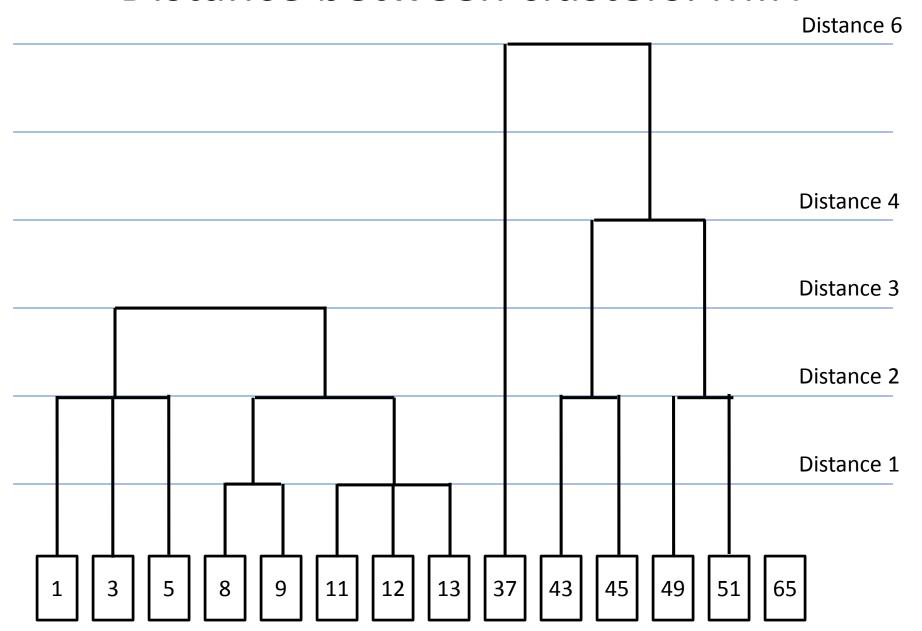
- Example in one dimension (to skip proximity matrix computation)
- The data consists of the ages of people at a family gathering.
- The goal is to cluster participants by age
- The distance between people is the difference in their ages.
- The procedure: sort participants by age, then begin clustering the closest groups



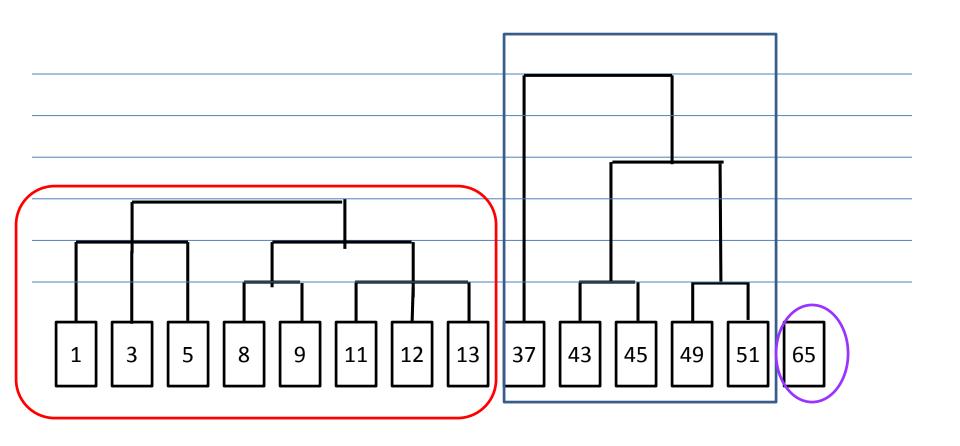




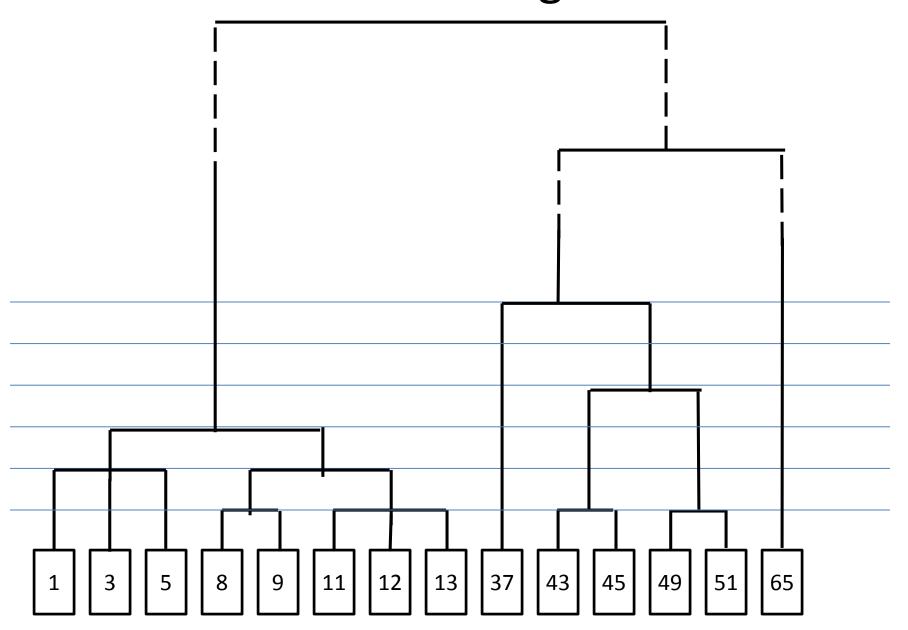




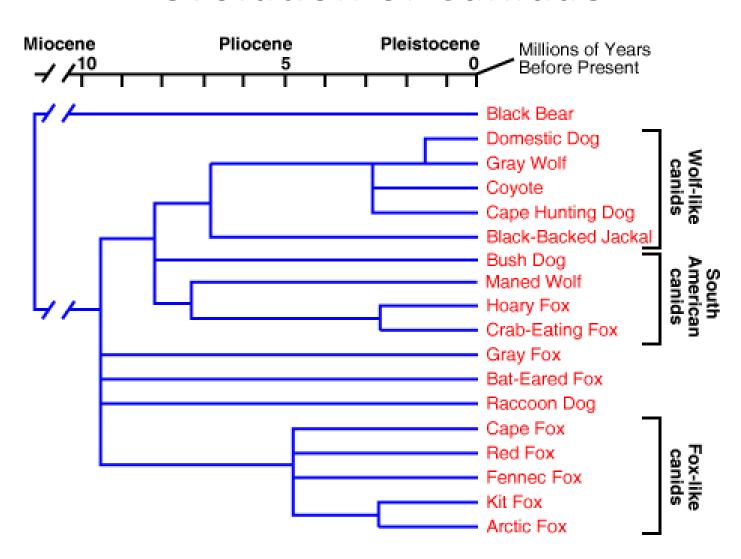
3 groups detected



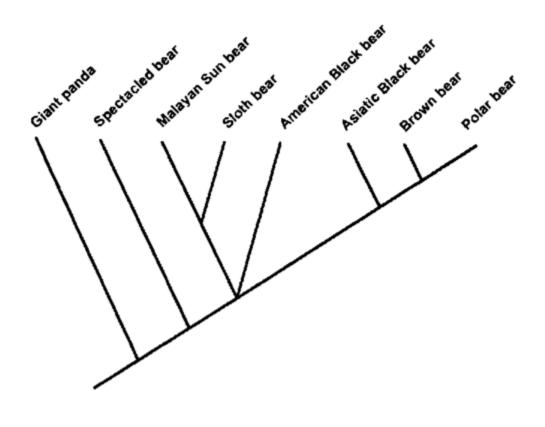
Final dendrogram



Hierarchical clustering application: evolution of Canidae

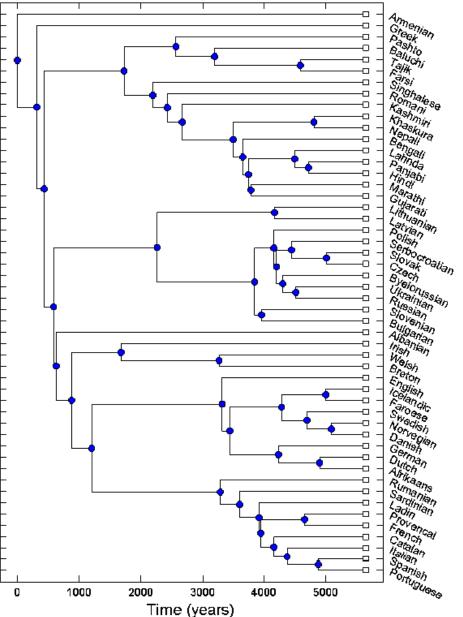


Giant Panda is a bear



Hierarchical clustering application:

languages evolution



From

"Indo-European languages tree by Levenshtein distance" by M. Serval and F. Petroni

Hierarchical clustering application: languages evolution

