Learning decision trees - full examples

Steps of the tree induction

- Step 1. Compute entropy of the instances in the current set (in the beginning - the entire dataset).
- Step 2. For each attribute, compute information gain and select the attribute which gives maximum information gain.
- Step 3. Create a node with the selected attribute and create branch for each possible attribute value. Split instances into subsets according to this value.
, Step 4. For each subset:
If no split is possible, create leaf node and mark it with the majority class
Else go to Step 1

Decision tree induction algorithm:

pseudocode

ID3 algorithm
current set = all
parent entropy = entropy of current set

- Step 1.

For each attribute:
compute entropy
compute information gain vs. parent entropy
best attribute $=$ attribute with maximum information gain

- Step 2.
create a node with best attribute
create branch for each possible attribute value split instances into subsets according to the value of best attribute
- Step 3.

For each subset:
If no split is possible then create leaf node mark it with the majority class
Else
current set =subset parent entropy = entropy of current set go to Step 1

The best attribute to split on

- The GINI score is maximized \Leftrightarrow (1.0-GINI score is minimized)
- ID3 algorithm
- Design issues
- The average entropy is minimized \Leftrightarrow (the information gain is maximized)

There are many other attribute selection criteria! (But almost no difference in accuracy)

When to stop splitting

Not to split: all records are of the same class

- ID3 algorithm
- Design issues
- Split criteria
- Stop criteria

Not to split: all records have the same attribute values

Not to split: when there is no information gain or information gain is not significant

Example 1: Tree induction from tax cheating dataset

ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Example 1: Categorizing numeric attributes

ID	Refund	Marital status	Taxable income	Cheat
1	Yes	Single	high	No
2	No	Married	high	No
3	No	Single	medium	No
4	Yes	Married	high	No
5	No	Divorced	medium	Yes
6	No	Married	medium	No
7	Yes	Divorced	high	No
8	No	Single	medium	Yes
9	No	Married	high	No
10	No	Single	high	Yes

Decision tree for tax cheating dataset

Classify new records

Identify the most discriminative attributes

The most important attributes are at the top of the tree

Example 2. Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Choose attribute that results in

the lowest entropy of the children nodes

(a)

(b)

Attribute "Outlook"

outlook=sunny

$$
\operatorname{info}([2,3])=\operatorname{entropy}(2 / 5,3 / 5)=-2 / 5^{*} \log (2 / 5,2)-3 / 5^{*} \log (3 / 5,2)
$$

$$
=.971
$$

outlook=overcast

$$
\begin{aligned}
& \text { outlook=overcast } \\
& \text { info([4,0]) = entropy }(4 / 4,0 / 4)=-1^{*} \log (1,2)-0 * \log (0,2)=0\left\{\begin{array}{c}
0 * \log (0) \text { is } \\
\text { normally } \\
\text { not defined. }
\end{array}\right. \\
& \text { outlook=rainy }
\end{aligned}
$$

$$
\text { info([3,2]) }=\operatorname{entropy}(3 / 5,2 / 5)=-3 / 5^{*} \log (3 / 5,2)-2 / 5^{*} \log (2 / 5,2)=
$$. 971

average entropy:

$$
.971 *(5 / 14)+0 *(4 / 14)+.971 *(5 / 14)=.693
$$

Attribute "Temperature"

temperature=hot

$$
\operatorname{info}([2,2])=\operatorname{entropy}(2 / 4,2 / 4)=-2 / 4^{*} \log (2 / 4,2)-2 / 4^{*} \log (2 / 4,2)
$$

$$
=1
$$

temperature=mild

$$
\begin{aligned}
& \text { info }([4,2])=\operatorname{entropy}(4 / 6,2 / 6)=-4 / 6 * \log (4 / 6,2)-2 / 6 * \log (2 / 6,2) \\
& \quad=.92
\end{aligned}
$$

temperature=cool

$$
\text { info([3,1]) }=\operatorname{entropy}(3 / 4,1 / 4)=-3 / 4^{*} \log (3 / 4,2)-1 / 4^{*} \log (1 / 4,2)
$$

$$
=.811
$$

average entropy:

$$
1 *(4 / 14)+.92 *(6 / 14)+.811 *(4 / 14)=.91
$$

Attribute "Humidity"

humidity=high

$$
\begin{aligned}
& \text { info }([3,4])=\text { entropy }(3 / 7,4 / 7)=-3 / 7^{*} \log (3 / 7,2)- \\
& 4 / 7^{*} \log (4 / 7,2)=.985
\end{aligned}
$$

humidity=normal
info([6,1]) $=$ entropy $(6 / 7,1 / 7)=-6 / 7^{*} \log (6 / 7,2)-$ $1 / 7^{*} \log (1 / 7,2)=.592$
average entropy:
$.985 *(7 / 14)+.592 *(7 / 14)=.788$

Attribute "Windy"

wind $y=f a l s e$

$$
\begin{aligned}
& \text { info }([6,2])=\text { entropy }(6 / 8,2 / 8)=-6 / 8^{*} \log (6 / 8,2)- \\
& 2 / 8^{*} \log (2 / 8,2)=.811
\end{aligned}
$$

humidity=true

$$
\begin{aligned}
& \text { info }([3,3])=\text { entropy }(3 / 6,3 / 6)=-3 / 6 * \log (3 / 6,2)- \\
& 3 / 6^{*} \log (3 / 6,2)=1
\end{aligned}
$$

average entropy:

$$
.811 *(8 / 14)+1 *(6 / 14)=.892
$$

And the winner is... "Outlook"

...So, the root will be "Outlook"

Continuing to split (for Outlook="Sunny")

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Sunny	Mild	Normal	True	Yes

Which one to choose?

Tree so far

Continuing to split (for Outlook="Overcast")

Outlook	Temp	Humidity	Windy	Play
Overcast	Hot	High	False	Yes
Overcast	Cool	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes

- Nothing to split here, "play" is always "yes".

Continuing to split (for Outlook="Rainy")

Outlook	Temp	Humidity	Windy	Play
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Rainy	Mild	Normal	False	Yes
Rainy	Mild	High	True	No

- We see that "Windy" is the one to choose. (Why?)

The final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
- Splitting stops when data can't be split any further or there is no information gain

Example 3: Tree induction

 from neighbor dataset.
Convert numeric to nominal

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	$?$

Example 3: Tree induction from neighbor dataset

Temp	Precip	Day	Clothes	
warm	None	Fri	Casual	Walk
chilly	None	Sun	Casual	Walk
chilly	Rain	Wed	Casual	Walk
warm	None	Mon	Casual	Drive
warm	None	Sat	Formal	Drive
warm	None	Sat	Casual	Drive
cold	Snow	Mon	Casual	Drive
warm	None	Tue	Casual	Drive
24	Rain	Mon	Casual	$?$

